Skip to main content
Log in

Voxel-Scale Digital Volume Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Among various correlation techniques to find the displacement field of a volume imaged by X-ray tomography at several deformation states, a new approach is proposed where the displacement is measured down to the voxel scale and determined from a mechanically regularized system using the equilibrium gap method, and an additional boundary regularization. It is shown that even if the underlying material behavior is not very well known, this approach leads to extremely small correlation residuals. An excellent stability of the estimated displacement field for noisy (reconstructed) volumes is also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baruchel J, Buffière J-Y, Maire E, Merle P, Peix G (2000) X-ray tomography in material sciences. Hermes Science, Paris

    Google Scholar 

  2. Maire E, Buffière J-Y, Salvo L, Blandin J-J, Ludwig W, Létang J-M (2001) On the application of X-ray microtomography in the field of materials science. Adv Eng Mat 3(8):539–546

    Article  Google Scholar 

  3. Bernard D (ed) (2008) 1st conference on 3D-imaging of materials and systems 2008. ICMCB, Bordeaux

    Google Scholar 

  4. Stock SR (2008) MicroComputed tomography: methodology and applications. CRC

  5. Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3):129–181

    Article  Google Scholar 

  6. Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press

  7. Bart-Smith H, Bastawros A-F, Mumm DR, Evans AG, Sypeck DJ, Wadley HNG (1998) Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater 46(10):3583–3592

    Article  Google Scholar 

  8. Babout L, Maire E, Buffière J-Y, Fougères R (2001) Characterisation by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater 49(11):2055–2063

    Article  Google Scholar 

  9. Bontaz-Carion J, Pellegrini Y-P (2006) X-ray microtomography analysis of dynamic damage in tantalum. Adv Eng Mater 8(6):480–486

    Article  Google Scholar 

  10. Schilling PJ, Karedla BR, Tatiparthi AK, Verges MA, Herrington PD (2005) X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos Sci Tech 65(14):2071–2078

    Article  Google Scholar 

  11. Sinclair R, Preuss M, Maire E, Buffiere J-Y, Bowen P, Withers PJ (2004) The effect of fibre fractures in the bridging zone of fatigue cracked Ti6Al4V/SiC fibre composites. Acta Mater 52(6):1423–1438

    Article  Google Scholar 

  12. Ferrié E, Buffiere J-Y, Ludwig W, Gravouil A, Edwards L (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 5(4):1111–1122

    Article  Google Scholar 

  13. Wolfsdorf TL, Bender WH, Voorhees PW (1997) The morphology of high volume fraction solid-liquid mixtures: an application of microstructural tomography. Acta Mater 45(6):2279–2295

    Article  Google Scholar 

  14. Ludwig O, Dimichiel M, Salvo L, Suéry M, Falus P (2005) In-situ three-dimensional microstructural investigation of solidification of an Al-Cu Alloy by ultrafast X-ray microtomography. Metall Mater Trans A 36(6):1515–1523

    Article  Google Scholar 

  15. Maire E, Colombo P, Adrien J, Babout L, Biasetto L (2007) Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J Eur Ceram Soc 27:1973–1981

    Article  Google Scholar 

  16. Viot P, Bernard D (2006) Impact test deformations of polypropylene foam samples followed by microtomography. J Mater Sci 41:1277–1279

    Article  Google Scholar 

  17. Ludwig W, Buffière J-Y, Savelli S, Cloetens P (2003) Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Mater 51(3):585–598

    Article  Google Scholar 

  18. Youssef S, Maire E, Gaertner R (2005) Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater 53(3):719–730

    Article  Google Scholar 

  19. Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang JM (2003) X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos Sci Technol 63(16):2431–2443

    Article  Google Scholar 

  20. Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51(8):2407–2415

    Article  Google Scholar 

  21. Toda H, Sinclair I, Buffière J-Y, Maire E, Connolley T, Joyce M, Khor KH, Gregson P (2003) Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography. Philos Mag 83(21):2429–2448

    Article  Google Scholar 

  22. Withers PJ, Bennett J, Hung Y-C, Preuss M (2006) Crack opening displacements during fatigue crack growth in Ti-SiC fibre metal matrix composites by X-ray tomography. Mater Sci Technol 22(9):1052–1058

    Article  Google Scholar 

  23. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  24. Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88

    Google Scholar 

  25. McKinley TO, Bay BK (2003) Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia. J Biomech 36(2):155–163

    Article  Google Scholar 

  26. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39(8):1253–1265

    Article  Google Scholar 

  27. Réthoré J, Tinnes J-P, Roux S, Buffière J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). C R Méc 336:643–649

    MATH  Google Scholar 

  28. Hild F, Maire E, Roux S, Witz J-F (2009) Three dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320

    Article  Google Scholar 

  29. Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57(14):4090–4101

    Article  Google Scholar 

  30. Limodin N, Réthoré J, Buffière J-Y, Hild F, Roux S, Ludwig W, Rannou J, Gravouil A (2010) Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater 58:2957–2967

    Article  Google Scholar 

  31. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325

    Article  Google Scholar 

  32. Bergonnier S, Hild F, Roux S (2005) Digital image correlation used for mechanical tests on crimped glass wool samples. J Strain Anal 40(2):185–197

    Article  Google Scholar 

  33. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–803

    Article  Google Scholar 

  34. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  35. Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196(49–52):5016–5030

    Article  MATH  Google Scholar 

  36. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272

    Article  MATH  Google Scholar 

  37. Davis GR, Elliot JC (2006) Artefacts in X-ray microtomography of materials. Mater Sci Eng 22(9):1011–1018

    Google Scholar 

  38. Ketcham RA (2006) New algorithms for ring artefact removal. In: Bonse U (ed) Developments in X-ray tomography V. SPIE, Bellingham, 00-1-15

    Google Scholar 

  39. Roux S, Hild F (2008) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508

    Article  Google Scholar 

  40. Leclerc H, Périé J-N, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical Properties. In: Gagalowicz A, Philips W (eds) MIRAGE 2009. LNCS, vol 5496. Springer, Berlin, pp 161–171

    Google Scholar 

  41. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis fractured samples. Eur J Comput Mech 18:285–306

    Google Scholar 

  42. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Methods Eng 61(2):189–208

    Article  MATH  Google Scholar 

  43. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1–4):141–157

    Article  MATH  Google Scholar 

  44. Roux S, Hild F (2006) From image analysis to damage constitutive law identification. NDT.net 11(12), roux.pdf

  45. Labiche J-C, Mathon O, Pascarelli S, Newton MA, Guilera Ferre G, Curfs C, Vaughan G, Homs A, Carreiras DF (2007) The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry and catalysis. Rev Sci Instrum 78:091301

    Article  Google Scholar 

  46. Buffière J-Y, Ferrié E, Proudhon H, Ludwig W (2006) Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater Sci Technol 22(9):1019–1024

    Article  Google Scholar 

  47. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics

Download references

Acknowledgements

This work was funded under the grant ANR-09-BLAN-0009-01 (RUPXCUBE Project). It was also made possible by an ESRF grant for the experiment MA-501 on beamline ID19. The scans were obtained with the help of Drs. J.-Y. Buffière, A. Gravouil, N. Limodin, W. Ludwig, and J. Rannou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leclerc, H., Périé, JN., Roux, S. et al. Voxel-Scale Digital Volume Correlation. Exp Mech 51, 479–490 (2011). https://doi.org/10.1007/s11340-010-9407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9407-6

Keywords

Navigation