Skip to main content
Log in

Modelling of a Cellular Rubber with Nonlinear Viscosity Functions

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper a porous carbon black-filled rubber is investigated under uniaxial tension. On the experimental site the main focus of attention lies on the Mullins effect, the thixotropic and the viscoelastic behaviour. Because of the two phase character of cellular rubber, the Theory of Porous Media is taken into account. Performing a proper preconditioning, the Mullins effect can be eliminated. Hence, it is not included in the material model. The constitutive model for the basic elasticity is based on a polynomial approach for an incompressible material which is expanded by a volumetric term to include the structural compressibility. Finally, the concept of finite viscoelasticity is applied introducing an intermediate configuration. Nonlinear relaxation functions are used to model the process dependent relaxation times, to simulate the thixotropy and the highly nonlinear behaviour concerning the deformation and feedrate. The material parameters of the model are estimated using a stochastic identification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Vroomen G (2004) EPDM-Moosgummi für die Tür- und Fensterdichtungen von Kraftfahrzeugen. GAK 3(57):163–176

    Google Scholar 

  2. Chen W, Lu F, Winfree N (2002) High-strain-rate compressive behavior of a rigid polyurethane foam with various densities. Exp Mech 42:65–73

    Article  Google Scholar 

  3. Dick JS, Annicelli RA (1999) Variation der vernetzungs- und treibreaktion für die steuerung von zellendichte und -struktur von zelligen vulkanisaten. GAK 52(4):297–308

    Google Scholar 

  4. Fuchs E, Reinartz KS (2001) Optimierung der Herstellung von Moosgummi. GAK 54(4):245–251

    Google Scholar 

  5. Haberstroh E, Kremers A (2004) Expansion von chemisch geschäumten Kautschukmischungen. Kautsch Gummi Kunstst 3(57):105–108

    Google Scholar 

  6. Haberstroh E, Kremers A, Epping K (2005) Extrusion von physikalisch geschäumten Kautschukprofilen. Kautsch Gummi Kunstst 9(58):449–454

    Google Scholar 

  7. Besdo D, Ihlemann J (1996) Zur Modellierung des Stoffverhaltens von Elastomeren. Kautsch Gummi Kunstst 49:495–503

    Google Scholar 

  8. Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 53:2259–2283

    Article  MathSciNet  MATH  Google Scholar 

  9. Miehe C, Keck J (2000) Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365

    Article  MATH  Google Scholar 

  10. Mullins L (1947) Effect of stretching on the properties of rubber. J Rubber Res 16:275–289

    Google Scholar 

  11. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  Google Scholar 

  12. Barnes H (1997) Thixotropy—a review. J Non-Newton Fluid Mech 70:1–33

    Article  Google Scholar 

  13. Diebels S (1999) A micropolar theory of porous media: constitutive modelling. Transport Porous Med 34:193–208

    Article  Google Scholar 

  14. Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Hutter K (ed) Continuum mechanics in environmental sciences. CISM International centre for Mechanical Sciences, vol 337, pp 313–402. Springer, Berlin

    Google Scholar 

  15. Clapeyron BPE (1834) Puissance motrice de la chaleur. J Ecol R Polytech 14:153–190

    Google Scholar 

  16. Yeoh OH, Flemming PD (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J Polym Sci Part B Polym Phys 35:1919–1931

    Article  Google Scholar 

  17. Ehlers W, Eipper G (1999) Finite elastic deformations in liquid-saturated and empty porous solids. Transport Porous Med 34:179–191

    Article  MathSciNet  Google Scholar 

  18. Haupt P (1993) On the mathematical modelling of material behaviour in continuum mechanics. Acta Mech 100:129–154

    Article  MathSciNet  MATH  Google Scholar 

  19. Sedlan K (2001) Viskoelastisches materialverhalten von elastomerwerkstoffen, experimentelle untersuchung und modellbildung. Dissertation, Berichte des Instituts für Mechanik (2/2001), Universität Gesamthochschule Kassel

  20. Besdo D, Ihlemann J (2003) A phenomenological constitutive model for rubberlike materials and its numerical applications. Int J Plast 19:1019–1036

    Article  MATH  Google Scholar 

  21. Ihlemann J (2002) Kontinuumsmechanische Nachbildung hochbelasteter technischer Gummiwerkstoffe. Dissertation, Universität Hannover

  22. Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123:1–25

    Article  MATH  Google Scholar 

  23. Lion A (2000) Thermomechanik von elastomeren. Berichte des Instituts für Mechanik der Universität Kassel (Bericht 1/2000)

  24. Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Dissertation, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, Bericht-Nr. F88/6

  25. Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53:2231–2258

    Article  MathSciNet  MATH  Google Scholar 

  26. Rae PJ, Brown EN (2005) The properties of poly (tetrafluoroethylene) (PTFE) in tension. Polymer 46:8128–8140

    Article  Google Scholar 

  27. Perie JN, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42:318–328

    Article  Google Scholar 

  28. Zhang D, Eggleton CD, Arola DD (2002) Evaluating the mechanical behaviour of arterial tissue using digital image correlation. Exp Mech 42:409–416

    Article  Google Scholar 

  29. Mullins L, Tobin NR (1965) Stress softening in rubber vulcanizates. Part I: use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J Appl Polym Sci 9:2993–3009

    Article  Google Scholar 

  30. Bueche F (1961) Mullins effect and rubber–filler interaction. J Appl Polym Sci 5:271–281

    Article  Google Scholar 

  31. Hanson DE, Hawley M, Houlton R, Chitanvis K, Rae P, Bruce Orler E, Wrobleski DA (2005) Stress softening experiments in silica-filled polydemethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 46:10989–10995

    Article  Google Scholar 

  32. Krawietz A (1986) Materialtheorie. Springer, Berlin

    MATH  Google Scholar 

  33. Acierno (1976) A nonlinear viscoelastic model with structure-dependent relaxation times, I. Basic formulation. J Non-Newtonian Fluid Mech 1:125–146

    Article  Google Scholar 

  34. Cheng DCH (1973) A differential form of constitutive relation for thixotropy. Rheol Acta 12:228–233

    Article  Google Scholar 

  35. Truesdell C (1957) Sulle basi delle termomeccanica. Rend Lincei 22:33–38

    MathSciNet  Google Scholar 

  36. Truesdell CA, Toupin R (1960) The classical field theories. In: Flügge S (Herausgeber), Handbuch der Physik III/1, Springer, Berlin

  37. Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  38. de Boer R (2000) Theory of porous media. Springer, Berlin

    MATH  Google Scholar 

  39. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178

    Article  MathSciNet  MATH  Google Scholar 

  40. Alts T (1979) On the energy-elasticity of rubber-like materials. Prog Colloid Polym Sci 66:367–375

    Article  Google Scholar 

  41. Chadwick P (1974) Thermo-mechanics of rubberlike materials. Phil Trans R Soc Lond A 276:371–403

    Article  Google Scholar 

  42. Coleman BD, Gurtin ME (1967) Thermodynamics with internal variables. J Chem Phys 47:597–613

    Article  Google Scholar 

  43. Haupt P (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646

    Article  MATH  Google Scholar 

  44. Haupt P, Lion A (2001) A generalisation of the Mooney–Rivlin model to finite linear viscoelasticity. In: Besdo D, Schuster RH, Ihlemann J (eds) Constitutive models for rubber. Swets & Zeitlinger, London, pp 57–64

    Google Scholar 

  45. Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124

    Article  MATH  Google Scholar 

  46. Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45:1805–1834

    Article  Google Scholar 

  47. Reese S, Govindjee S (1998) Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mech Time-Depend Mater 1:357–396

    Article  Google Scholar 

  48. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    Article  MATH  Google Scholar 

  49. Reese S, Wriggers P (1997) A material model for rubber-like polymers exhibiting plastic deformation, computational aspects and a comparison with experimental results. Comput Methods Appl Mech Eng 148:279–298

    Article  MATH  Google Scholar 

  50. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  Google Scholar 

  51. Rivlin RS (1948) Large elastic deformation of isotropic materials IV: further developments of the general theory. Phil Trans R Soc Lond A A241:379–397

    Article  MathSciNet  MATH  Google Scholar 

  52. Scheday G (2003) Theorie und numerik der parameteridentifikation von materialmodellen der finiten elastizität und inelastizität auf der grundlage optischer feldmessmethoden. Dissertation, Bericht-Nr. I-11 des Instituts für Mechanik, Lehrstuhl I, Universität Stuttgart

  53. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

    Google Scholar 

  54. Avril S, Bonnet M, Bretelle A (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  55. Rechenberg I (1994) Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the German Science Foundation (DFG) under the grant DI 930/9-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koprowski-Theiß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprowski-Theiß, N., Johlitz, M. & Diebels, S. Modelling of a Cellular Rubber with Nonlinear Viscosity Functions. Exp Mech 51, 749–765 (2011). https://doi.org/10.1007/s11340-010-9376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9376-9

Keywords

Navigation