Skip to main content
Log in

Non-linear Damping and Frequency Identification in a Progressively Damaged R.C. Element

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper describes the non-linear identification of a progressively damaged reinforced concrete beam-column node. The aims are the detection and identification of the different sources of damping and their dependence from the damage level. To this end a specially formulated non-linear identification method is proposed, based on a time-varying polynomial approximation of the system dynamics, suitable for use in the presence of excitations of any form. A minimum condition imposed to the identified dissipated energy leads to the distinction of the linear viscous component from the other damping mechanisms. The estimated values obtained from the experimental tests show a significant influence of the damage level on the linear viscous damping coefficient. This suggests that, in a non-linear dynamic time-history analysis, the use of Rayleigh damping model with proportionality to the initial stiffness is basically in contrast with experimental evidence and more refined viscous damping models are needed for prediction purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dieterle R, Bachmann H (1981) Experiments and models for the damping behaviour in vibrating reinforced concrete beams in the uncracked and cracked condition. IABSE Reports of the Working Commissions 34:69–82

    Google Scholar 

  2. Mahrenholtz O, Bachmann H (1991) Vibration problems in structures—practical guidelines. CEB Bulletin d’information 209:169–180

    Google Scholar 

  3. Hall JF (2006) Problems encountered in the use (or misuse) of Rayleigh damping. Earthq Eng Struct D 35:525–545. doi:10.1002/eqe.541

    Article  Google Scholar 

  4. Léger P, Dussault S (1992) Seismic-energy dissipation in MDOF structures. J Struct Eng-ASCE 118(5):1251–1269. doi:10.1061/(ASCE)0733-9445(1992)118:5(1251)

    Article  Google Scholar 

  5. Petrini L, Maggi C, Priestley MJN, Calvi GM (2008) Experimental verification of viscous damping modeling for inelastic time history analyzes. J Earthquake Eng 12(S1):125–145

    Google Scholar 

  6. Priestley MJN, Grant DN (2005) Viscous damping in seismic design and analysis. J Earthquake Eng 9(SP2):229–255

    Article  Google Scholar 

  7. Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR (2003) A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory Report, LA-13976-MS

  8. Lazan BJ (1968) Damping of materials and members in structural mechanics. Pergamon, Oxford

    Google Scholar 

  9. Adhikari S (2007) On the quantification of damping model uncertainty. J Sound Vib 306:153–171. doi:10.1016/j.jsv.2007.05.022

    Article  Google Scholar 

  10. Ceravolo R (2004) Use of instantaneous estimators for the evaluation of structural damping. J Sound Vib 274:385–401. doi:10.1016/j.jsv.2003.05.025

    Article  Google Scholar 

  11. Chen S-L, Liu J-J, Lai H-C (2009) Wavelet analysis for identification of damping ratios and natural frequencies. J Sound Vib 323:130–147. doi:10.1016/j.jsv.2009.01.029

    Article  Google Scholar 

  12. Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569. doi:10.1006/jsvi.1998.1709

    Article  Google Scholar 

  13. Salzmann A (2002) Damping characteristics of reinforced and prestressed normal and high-strength concrete beams. Dissertation, School of Engineering, Faculty of Engineering and Information Technology, Griffith University, Australia

  14. Salzmann A, Fragomeni S, Loo YC (2003) The damping analysis of experimental concrete beams. Adv Struct Eng 6(1):53–64. doi:10.1260/136943303321625739

    Article  Google Scholar 

  15. Aoki T, Sabia D, Yuasa N, Rivella D, Muto H (2005) Dynamic identification of RC building No.5 of the college of industrial technology at Nihon University. In: Proceedings of Tenth International Conference on Civil, Structural and Environmental Engineering Computing. Rome, Italy

  16. Curadelli RO, Riera JD, Ambrosiani D, Amani MG (2008) Damage detection by means of structural damping identification. Eng Struct 30:3497–350. doi:10.1016/j.engstruct.2008.05.024

    Article  Google Scholar 

  17. Ndambi JM, Peeters B, Maeck J, De Visscher J, Wahab MA, Vantomme J, De Roeck G, De Wilde WP (2000) Comparison of techniques for modal analysis of concrete structures. Eng Struct 22:1159–1166. doi:10.1016/S0141-0296(99)00054-1

    Article  Google Scholar 

  18. Flesch R (1981) The damping behaviour of R/C cantilever elements. IABSE Reports of the Working Commissions 34:83–98

    Google Scholar 

  19. Chowdhury SH, Loo YC, Fragomeni S (2000) Damping formulae for reinforced and partially prestressed concrete beams. Adv Struct Eng 3(4):327–335

    Article  Google Scholar 

  20. Chowdhury SH, Loo YC (2003) Logarithmic decrement of damping xin reinforced and partially prestressed concrete beams—new prediction formulas. In: Proceedings of International Conference on Advances in Structures, Steel, Concrete, Composite and Aluminium (ASSCCA ’03), pp. 569–573. Sydney, Australia

  21. Modena C, Sonda D, Zonta D (1999) Damage localization in reinforced concrete structures by using damping measurements. In: Proceedings of the International Conference on Damage Assessment of Structures (DAMAS 99): 132–141. Dublin, Ireland

  22. Zonta D, Modena C, Bursi OS (2000) Analysis of dispersive phenomena in damaged structures. In: Proceeding of European COST F3 Conference on System Identification and Structural Health Monitoring, Spain, pp. 801–810

  23. Kyprianou A, Worden K, Panet M (2001) Identification of hysteretic systems using differential evolution algorithm. J Sound Vib 248(2):289–314. doi:10.1006/jsvi.2001.3798

    Article  Google Scholar 

  24. Smyth AW, Masri SF, Kosmatopoulos E, Chassiakos AG, Caughey TK (2002) Development of adaptive modelling techniques for non-linear hysteretic systems. Int J Nonlinear Mech 37:1435–1451. doi:10.1016/S0020-7462(02)00031-8

    Article  MATH  Google Scholar 

  25. Benedettini F, Capecchi D, Vestroni F (1995) Identification of hysteretic oscillators under earthquake loading by nonparametric models. J Eng Mech-ASCE 121:606–612. doi:10.1061/(ASCE)0733-9399(1995)121:5(606)

    Article  Google Scholar 

  26. Masri SF, Caffrey JP, Caughey TK, Smyth AW, Chassiakos AG (2004) Identification of the state equation in complex non-linear systems. Int J Nonlinear Mech 39:1111–1127. doi:10.1016/S0020-7462(03)00109-4

    Article  MATH  Google Scholar 

  27. Pei J-S, Smyth AW, Kosmatopoulos E (2004) Analysis and modification of Volterra/Wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems. J Sound Vib 275:693–718. doi:10.1016/j.jsv.2003.06.005

    Article  Google Scholar 

  28. Ceravolo R, Demarie GV, Erlicher S (2007) Instantaneous identification of Bouc-Wen-type hysteretic systems from seismic response data. Key Eng Mat 347:331–338. doi:10.4028/www.scientific.net/KEM.347.331

    Article  Google Scholar 

  29. Tobita J (1996) Evaluation of nonstationary damping characteristics of structures under earthquake excitation. J Wind Eng Ind Aerod 59:283–298. doi:10.1016/0167-6105(96)00012-8

    Article  Google Scholar 

  30. Worden K, Tomlinson GR (2001) Nonlinearity in structural dynamics. Detection, identification and modelling. Institute of Physics, Bristol

    Book  Google Scholar 

  31. Park Y, Ang A (1985) Mechanistic seismic damage model for reinforced concrete. J Struct Eng-ASCE 111(4):722–739. doi:10.1061/(ASCE)0733-9445(1985)111:4(722)

    Article  Google Scholar 

  32. Peng ZK, Tse PW, Chu FL (2005) An improved Hilbert-Huang transform and its application in vibration signal analysis. J Sound Vib 286:187–205. doi:10.1016/j.jsv.2004.10.005

    Article  Google Scholar 

  33. Salvino LW (2000) Empirical mode analysis of structural response and damping. In: Proceedings of IMAC-XVIII: 503–509. San Antonio, Texas

  34. Yang JN, Ying L, Pan S, Huang N (2003) System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthq Eng Struct D 32:1443–1467. doi:10.1002/eqe.287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Demarie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demarie, G.V., Sabia, D. Non-linear Damping and Frequency Identification in a Progressively Damaged R.C. Element. Exp Mech 51, 229–245 (2011). https://doi.org/10.1007/s11340-010-9360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9360-4

Keywords

Navigation