Abstract
Nanocrystalline metals have been shown to exhibit unique mechanical behavior, including break-down in Hall-Petch behavior, suppression of dislocation-mediated plasticity, induction of grain boundary sliding, and induction of mechanical grain coarsening. Early research on the fatigue behavior of nanocrystalline metals shows evidence of improved fatigue resistance compared to traditional microcrystalline metals. In this review, experimental and modeling observations are used to evaluate aspects of cyclic plasticity, microstructural stability, crack initiation processes, and crack propagation processes. In cyclic plasticity studies to date, nanocrystalline metals have exhibited strongly rate-dependent cyclic hardening, suggesting the importance of diffusive deformation mechanisms such as grain-boundary sliding. The cyclic deformation processes have also been shown to cause substantial mechanically-induced grain coarsening reminiscent of coarsening observed during large-strain monotonic deformation of nanocrystalline metals. The crack-initiation process in nanocrystalline metals has been associated with both subsurface internal defects and surface extrusions, although it is unclear how these extrusions form when the grain size is below the scale necessary for persistent slip band formation. Finally, as expected, nanocrystalline metals have very little resistance to crack propagation due to limited plasticity and the lack of crack path tortuosity among other factors. Nevertheless, like bulk metallic glasses, nanocrystalline metals exhibit both ductile fatigue striations and metal-like Paris-law behavior. The review provides both a comprehensive critical survey of existing literature and a summary of key areas for further investigation.
Similar content being viewed by others
References
Lowe TC (2007) Enhancing fatigue properties of nanostructured metals and alloys. Adv Mater Res 29–30:117–122
Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315
Haouaoui M et al (2004) Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion. Metall Mater Trans A 35A:2935–2949
Karimpoor AA, Erb U (2006) Mechanical properties of nanocrystalline cobalt. Phys Status Solidi A 203:1265–1270
Karimpoor AA et al (2003) High strength nanocrystalline cobalt with high tensile ductility. Scripta Mater 49:651–656
Karimpoor AA et al (2002) Tensile properties of bulk nanocrystalline hexagonal cobalt electrodeposits. Mater Sci Forum 386–3:415–420
Agnew SR et al (2000) Microstructure and mechanical behavior of nanocrystalline metals. Mater Sci Eng A A285:391–396
Fan GJ et al (2007) Mechanical behavior of a bulk nanocrystalline Ni-Fe alloy. J Alloy Compd 434(435):298–300
Khan AS et al (2006) Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int J Plast 22:195–209
Ajdelsztajn L et al (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–666
Xiao C et al (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A A301:35–43
Chokshi AH et al (1989) On the validity of the Hall-Petch relationship in nanocrystalline metals. Scripta Metall 23:1679–1683
Wang YM et al (2003) Microsample tensile testing of nanocrystalline copper. Scripta Mater 48:1581–1586
Yang Y et al (2008) Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall Mater Trans A 39A:1145–1156
Tian JW et al (2007) A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng A 468–470:164–170
Roland T et al (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater 54:1949–1954
Nikitin I (2005) Mechanical and thermal stability of mechanically induced near-surface nanostructures. Mater Sci Eng Abstr (Structural Materials: Properties, Microstructure and Processing) 403:318–327
Han SZ et al (2007) Fatigue behavior of nano-grained copper prepared by ECAP. J Alloy Compd 434–435:304–306
Burkle G et al (2002) Determination of the mechanical properties of nanocrystalline Fe-Cr-based thermal spray coatings. Mater Sci Forum 386(388):571–576
Cavaliere P (2007) Low cycle fatigue of electrodeposited pure nanocrystalline metals. Mater Sci Forum 2007:2–302
Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30:1398–1408
Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater 49:675–680
Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Int J Fatigue 27:1147–1158
Moser B et al (2006) Cyclic strain hardening of nanocrystalline nickel. Scripta Mater 54:1151–1155
Mano H et al (2005) Characterization of nanocrystalline surface layer induced by shot peening and effect on their fatigue strength. Materials Research Society Symposium Proceedings, November 30–December 2, 2004, Boston, MA, 843: 67–72
Pao PS, Jones HN, Feng CR (2004) Fatigue crack growth and fracture toughness in bimodal Al 5083. Materials Research Society Symposium Proceedings, December 1–5, 2003, Boston, MA, 791: 17–22
Pao PS et al (2003) Tensile deformation and fatigue crack growth in bulk nanocrystalline Al-7.5 Mg. Materials Research Society Symposium Proceedings, December 2–6, 2002, Boston, MA, 740: 15–20
Sriraman KR, Raman SGS, Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys. Mater Lett 61:715–718
Witney AB et al (1995) Fatigue of nanocrystalline copper. Scripta Metall Et Mater 33:2025–2030
Xie JJ, Wu XL, Hong YS (2008) Study on fatigue crack nucleation of electro deposited nanocrystalline nickel. Adv Mater Res 33–37:925–930
Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774
Czyzniewski A (2003) Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433:180–185
Hanlon T et al (2005) Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals. Int J Fatigue 27:1159–1163
Zhang YS et al (2006) Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260:942–948
Inturi RB, Sklarska-Smialowska Z (1992) Localized corrosion of nanocrystalline 304 type stainless steel films. Corros 48:398–403
Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corr Sci 46:3019–3029
Qiu, JH (2002) A study of the corrosion resistance of electroplated nanocrystalline and polycrystalline nickel coatings. 2nd International Conference on Advanced Materials Processing, Dec 02–04, Singapore: 211–214
Yamakov V et al (2007) Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. J Mater Sci 42:1466–1476
Warner DH, Curtis WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat Mater 6:876–881
Farkas D, Willemann M, Hyde B (2005) Atomistic mechanisms of fatigue in nanocrystalline metals. Phys Rev Lett 94:165502–4
Noronha SJ, Farkas D (2002) Dislocation pinning effects on fracture behavior: atomistic and dislocation dynamics simulations. Phys Rev B 66:132103
Farkas D et al (2005) Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni. Acta Mater 53:3115–3123
Cao AJ, Wei YG (2007) Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel. Phys Rev B 76:024113
Farkas D (2005) Twinning and recrystallisation as crack tip deformation mechanisms during fracture. Phil Mag 85:387–397
Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A 412:316–322
Dao M et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065
Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556
Siow KS, Tay AAO, Oruganti P (2004) Mechanical properties of nanocrystalline copper and nickel. Mater Sci Tech 20:285–294
Torres MAS, Voorwald HJC (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886
Montross CS et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036
Altenberger I et al (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264:1–16
Nikitin I, Altenberger I, Scholtes B (2005) Residual stress state and cyclic deformation behaviour of deep rolled and laser-shock peened AISI 304 stainless steel at elevated temperatures. Mater Sci Forum 490(491):376–383
Farrahi GH, Lebrun JL, Couratin D (1995) Effect of shot peening on residual-stress and fatigue life of a spring steel. Fatigue Fract Eng Mater Struct 18:211–220
Peyre P et al (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113
Ayyub P et al (2001) Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl Phys A 73:67–73
Wang YM, Jankowski AF, Hamza AV (2007) Strength and thermal stability of nanocrystalline gold alloys. Scripta Mater 57:301–304
Jankowski AF et al (2006) Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits. Thin Solid Films 494:268–273
Abraham M et al (2001) Microstructure and thermal stability of electrodeposited nanocrystalline nickel. International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, Jun 24–29, 2001, Ann Arbor, MI: 397–402
Arnould O, Hubert O, Hild F (2004) Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodeposits. Nanoscale Materials and Modeling—Relations Among Processing, Microstructure and Mechanical Properties, April 13–16, 2004, San Francisco, CA: 357–362
Cheng S et al (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scripta Mater 57:217–220
Cziraki, A, et al (1994) Thermal-stability of nanocrystalline nickel electrodeposits-Differential scanning calorimetry, transmission electron-microscopy and magnetic studies. 8th International Conference on Rapidly Quenched and Metastable Materials, Aug 22–27, Sendai, Japan: 531–535
Hattar K et al (2008) Defect structures created during abnormal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801
Hugo RC et al (2003) In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51:1937–1943
Jianhong H, Schoenung JM (2003) Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall Mater Trans A 34A:673–683
Klementl U, Erb U, Aust KT (1995) Investigations of the grain growth behaviour of nanocrystalline nickel. Nanostructured Mater 6:581–584
Knapp JA, Follstaedt DM (2004) Hall-Petch relationship in pulsed-laser deposited nickel films. J Mater Res 19:218–227
Kumar KS et al (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405
Larsen KP et al (2003) MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sens Actuators A 103:156–164
Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51:3905–3913
Wu X et al (2006) Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Mater 54:1685–1690
Xie J, Wu X, Hong Y (2007) Shear bands at the fatigue crack tip of nanocrystalline nickel. Scripta Mater 57:5–8
Yang Y et al (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 444:39–50
Watts OP (1916) Rapid nickel plating [with discussion]. Trans Am Electrochem Soc 29:395–403
Cui BZ et al (2007) Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater 55:4429–4438
Tjahyono NI, Chiu YL (2008) The effect of substrate on the microstructure and preferred orientation of nanocrystalline copper prepared by electrodeposition. Symposium on Chemical and Electrochemical Synthesis of Advanced Materials and Nanostructures on Solid Surfaces, Sep 17–21, 2007, Warsaw, Poland, 5: 3522–3525
Dini JW (1982) Electrodeposition: the materials science of coatings and substrates. Noyes, New York
Bastos A, Zaefferer S, Raabe D (2008) Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films. J Microsc 230:487–498
Buchheit TE et al (2006) Electrodeposited 80Ni-20Fe (Permalloy) as a structural material for high aspect ratio microfabrication. Mater Sci Eng A 432:149–157
Yin WM, Whang SH, Mirshams RA (2005) Effect of interstitials on tensile strength and creep in nanostructured Ni. Acta Mater 53:383–392
El-Sherik AM, Shirokoff J, Erb U (2005) Stress measurements in nanocrystalline Ni electrodeposits. J Alloy Compd 389:140–143
Schlesinger M, Paunovic M (eds) (2000) Modern electroplating. 4th ed. Electrochemical society series. Wiley and Sons, New York
Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7:205–212
Gilmore DL et al (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Tech 8:576–582
Dykhuizen RC et al (1999) Impact of high velocity cold spray particles. J Therm Spray Tech 8:559–564
Hall AC et al (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. J Therm Spray Tech 15:233–238
Hall, A, et al (2009) Preparation and mechanical properties of cold sprayed nanocrystalline aluminum. International Thermal Spray Conference, June 2–4, 2008, Maastricht, The Netherlands:
Alkhimov AP, Kosarev VF, Papyrin AN (1990) A method of cold gas-dynamic deposition. Sov Phys Dokl 35:1047–1049
Ajdelsztajn L et al (2006) Cold-spray processing of a nanocrystalline Al-Cu = Mg-Fe-Ni alloy with Sc. J Therm Spray Tech 15:184–190
Richer P et al (2006) Substrate roughness and thickness effects on cold spray nanocrystalline Al-Mg coatings. J Therm Spray Tech 15:246–254
Ajdelsztajn L, Jodoin B, Schoenung JM (2006) Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Tech 201:1166–1172
Fan SQ et al (2006) Characterization of microstructure of nano-TiO2 coating deposited by vacuum cold spraying. J Therm Spray Tech 15:513–517
Li CJ et al (2007) Characterization of nanostructured WC-Co deposited by cold spraying. J Therm Spray Tech 16:1011–1020
Mughrabi H, Hoppel HW, Kautz M (2004) Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scripta Mater 51:807–812
Hoppel HW et al (2006) An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue 28:1001–1010
Canadinc D et al (2008) On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scripta Mater 58:307–310
Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater Sci Eng A 410–411:422–425
Ivanisenko Y, Valiev RZ, Fecht HJ (2005) Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater Sci Eng A 390:159–165
Pérez-Prado MT et al (2008) Bulk nanocrystalline [omega]-Zr by high-pressure torsion. Scripta Mater 58:219–222
Yang Z, Welzel U (2005) Microstructure-microhardness relation of nanostructured Ni produced by high-pressure torsion. Mater Lett 59:3406–3409
Lee Z et al (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scripta Mater 51:209–214
Stolyarov VV et al (2000) Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater Sci Eng A 282:78–85
Valiev RZ et al (1996) Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder. Scripta Mater 34:1443–1448
Liao XZ et al (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88
Mano H, Kondo S, Matsumuro A (2006) Microstructured surface layer induced by shot peening and its effect on fatigue strength. J Japan Inst Metals 70:415–419
Martin U et al (1998) Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045. Mater Sci Eng A 246:69–80
Bonelli M et al (2003) Pulsed laser deposition of diamondlike carbon films on polycarbonate. J Appl Phys 93:859–865
Palkar VR, Prashanthi K, Dattagupta SP (2008) Influence of process-induced stress on multiferroic properties of pulse laser deposited Bi0.7Dy0.3FeO3 thin films. J Phys D 41:5
Luzin V, Valarezo A, Sampath S (2007) Through-thickness residual stress measurement in metal and ceramic spray coatings by neutron diffraction. MECASENS 4th International Conference on Stress Evaluation using Neutrons and Synchrotron Radiation, Sep 24–26, Vienna, AUSTRIA: 315–320
Choi WB et al (2007) Integrated characterization of cold sprayed aluminum coatings. Acta Mater 55:857–866
Jiang HG et al (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A 290:128–138
Shaik G, Milligan W (1997) Consolidation of nanostructured metal powders by rapid forging: Processing, modeling, and subsequent mechanical behavior. Metall Mater Trans A 28:895–904
ASTM (1993) Standard test methods of tension testing of metallic foil. ASTM International, West Conshohocken
IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 2: Tensile testing method of thin film materials, European Committee for Electrotechnical Standardization
IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 3: Thin film standard test piece for tensile testing, European Committee for Electrotechnical Standardization
IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 1: Terms and definitions, European Committee on Electrotechnical Standardization
IEC (2009) Semiconductor devices—Micro-electromechanical devices—Part 6: Axial fatigue testing methods of thin film materials, International Electrotechnical Commission
Schwaiger R, Kraft O (1999) High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scripta Mater 41:823–829
Schwaiger R, Dehm G, Kraft O (2003) Cyclic deformation of polycrystalline Cu films. Phil Mag 83:693–710
ASTM (2007) Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. ASTM International, West Conshohocken
ASTM (2004) Standard practice for strain-controlled fatigue testing. ASTM International, West Conshohocken
ASTM (2008) Standard test method for measurement of fatigue crack growth rates. ASTM International, West Conshohocken
Yang Y et al (2007) Fatigue of LIGA Ni micro-electro-mechanical system thin films. Metall Mater Trans A 38:2340–2348
Cheng S et al (2009) Cyclic deformation of nanocrystalline and ultrafine-grained nickel. Acta Mater 57:1272–1280
Boyce BL, Michael JR, Kotula PG (2004) Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52:1609–1619
Misra A et al (2004) Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52:2387–2394
Suresh S (1991) Fatigue of materials. Cambridge University Press, Cambridge
Zhu X, Jones JW, Allison JE (2008) Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: stress-controlled fatigue life response. Metall Mater Trans A 39:2681–2688
Gutkin MY, Ovid’ko IA, Skiba NV (2005) Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J Phys D 38:3921–3925
Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics Part 2: applications to the formation of persistent slip bands, planar arrays and dislocation cells. Phys Rev B 41:6968–6976
Depres C, Robertson CF, Fivel MC (2004) Low-strain fatigue in AISI 316 L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles—I. Dislocation microstructures and mechanical behaviour. Phil Mag 84:2257–2275
Depres C, Robertson CF, Fivel MC (2006) Low-strain fatigue in 316 L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: persistent slip markings and micro-crack nucleation. Phil Mag 86:79–97
Hahner P, Tippelt B, Holste C (1998) On the dislocation dynamics of persistent slip bands in cyclically deformed fcc metals. Acta Mater 46:5073–5084
Wang ZB et al (2003) Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci Eng A 352:144–149
Qi ZQ, Jiang JC, Meletis EI (2009) Wear mechanism of nanocrystalline metals. 1st International Meeting on Developments in Materials, Processes and Applications of Nanotechnology (MPA 2007), Jan 15, Belfast, North Ireland: 4227–4232
Sun HQ, Shi YN, Zhang MX (2009) Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266:666–670
Hoppel HW, et al (2002) Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 82: 1781–1794
Gianola DS et al (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263
Gianola DS et al (2008) Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater Sci Eng A 483:637–640
Yang B et al (2008) Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scripta Mater 58:790–793
Schiøtz J (2004) Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater Sci Eng A 375–377:975–979
Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916–3
Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727
Cahn JW, Taylor JE (2004) A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater 52:4887–4898
Wang QY et al (2002) Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue 24:1269–1274
Chai G (2007) Damage behavior of metallic materials under very high cycle fatigue. Key Eng Mater 348–349:237–240
Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822
Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216
Boyce BL, Ritchie RO (2001) Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4 V. Eng Fract Mech 68:129–147
Meirom RA et al (2008) Velocity-dependent fatigue crack paths in nanograined Pt films. Phys Rev Lett 101:085503–4
Fujita K, Inoue A, Zhang A (2001) Fractography of fatigue crack propagation in a nanocrystalline Zr-based bulk metallic glass. Scripta Mater 44:1629–1633
Sergueeva AV et al (2005) Shear band formation and ductility in bulk metallic glass. Phil Mag 85:2671–2687
Ovid’ko IA, Sheinerman AG (2004) Triple junction nanocracks in fatigued nanocrystalline materials. Acta Mater 7:61–66
Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Sci 287:1463–1466
Yang F, Yang W (2008) Brittle versus ductile transition of nanocrystalline metals. Int J Solids Struct 45:3897–3907
Ovid’ko IA, Sheinerman AG (2009) Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater 60:627–630
Yang W, Wang H (2004) Mechanics modeling for deformation of nano-grained metals. J Mech Phys Solids 52:875–889
Ovid’ko IA, Sheinerman AG (2007) Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl Phys Lett 90:171927–3
Ritchie R (1988) Mechanisms of fatigue crack-propagation in metals, ceramics and composites—role of crack tip shielding. Mater Sci Eng A 103:15–28
Gutkin MY, Ovid’ko IA (2004) Nanocracks at grain boundaries in nanocrystalline materials. Phil Mag Lett 84:655–663
Ebrahimi F, Li HQ (2007) The effect of annealing on deformation and fracture of a nanocrystalline fcc metal. J Mater Sci 42:1444–1454
Xu MH, Patu S, Wang ZG (1988) The improvement in fatigue life of pure polycrystalline nickel by nitrogen ion-implantation. Phys Status Solidi A 105:419–425
Demers V et al (2009) Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys. Mater Sci Eng A 513–14:185–196
Webster GA, Ezeilo AN (2001) Residual stress distributions and their influence on fatigue lifetimes. Int J Fatigue 23:375–383
Potirniche GP et al (2005) Fatigue damage in nickel and copper single crystals at nanoscale. Int J Fatigue 27:1179–1185
Kruzic JJ et al (2005) Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading. Acta Mater 53:2595–2605
Gilbert C, Schroeder V, Ritchie R (1999) Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A 30:1739–1753
Author information
Authors and Affiliations
Corresponding author
Additional information
This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United States Government or any agency thereof.
Rights and permissions
About this article
Cite this article
Padilla, H.A., Boyce, B.L. A Review of Fatigue Behavior in Nanocrystalline Metals. Exp Mech 50, 5–23 (2010). https://doi.org/10.1007/s11340-009-9301-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11340-009-9301-2