Skip to main content

Advertisement

Log in

Experimental Study of Open-Cell Cellular Structures with Elastic Filler Material

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Open-cell cellular structures have a high potential for use in automotive, railway, ship and aerospace industry as crash energy absorbers. This paper focuses on the influence of the second phase filler material as a way to further increase the capability of cellular material energy absorption. The behaviour of ductile (aluminium alloy) and brittle (polymer) cellular structures with regular topology with and without the pore filler (silicon rubber) under quasi-static and dynamic compressive loading conditions has been experimentally studied and evaluated. The base material properties of the aluminium alloy and the polymer were obtained with separate experimental testing. The use of second phase filler material resulted in significant changes in cellular material behaviour. It was observed that the pore filler material increases the capability of energy absorption and furthermore improves and stabilises the response of a brittle cellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shim VPW, Yap KY, Stronge WJ (1992) Effects of nonhomogeneity, cell damage and strain-rate on impact crushing of a strain-softening cellular chain. Int J Impact Eng 12:585–602 doi:10.1016/0734-743X(92)90251-N.

    Article  Google Scholar 

  2. Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int J Impact Eng 25:455–472 doi:10.1016/S0734-743X(00)00060-9.

    Article  Google Scholar 

  3. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632 doi:10.1016/S0079-6425(00)00002-5.

    Article  Google Scholar 

  4. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge.

    Google Scholar 

  5. Sieradzki K, Green D, Gibson LJ (1990) Mechanical properties of porous and cellular materials. In: Proceedings MRS Symposium.

  6. Papadopoulos DP, Konstantinidis IC, Papanastasiou N, Skolianos S, Lefakis H, Tsipas DN (2004) Mechanical properties of Al metal foams. Mater Lett 58:2574–2578 doi:10.1016/j.matlet.2004.03.004.

    Article  Google Scholar 

  7. Seitzberger M, Rammerstorfer FG, Gradinger R, Degischer HP, Blaimschein M, Walch C (2000) Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int J Solids and Struct 37:4125–4147 doi:10.1016/S0020-7683(99)00136-5.

    Article  Google Scholar 

  8. Fusheng H, Jianning W, Hefa C, Junchang G (2003) Effects of process parameters and alloy compositions on the pore structure of foamed aluminum. J Mater Process Technol 138:505–507 doi:10.1016/S0924-0136(03)00135-3.

    Article  Google Scholar 

  9. Shapovalov V (1994) Porous metals. MRS Bull 19:24–29.

    Google Scholar 

  10. Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Elsevier Science, Burlington.

    Google Scholar 

  11. Körner C, Singer RF (2000) Processing of metal foams-challenges and opportunities. Adv Eng Mater 2:159–165 doi:10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O.

    Article  Google Scholar 

  12. Nakajima H (2007) Fabrication, properties and application of porous metals with directional pores. Prog Mater Sci 52:1091–1173 doi:10.1016/j.pmatsci.2006.09.001.

    Article  Google Scholar 

  13. Vesenjak M (2006) Computational modelling of cellular structure under impact conditions, Ph.D. thesis, Faculty of Mechanical Engineering, Maribor.

  14. Vesenjak M, Öchsner A, Hriberšek M, Ren Z (2007) Behaviour of cellular structures with fluid fillers under impact loading. Int J Multiphys 1:101–122 doi:10.1260/175095407780130508.

    Article  Google Scholar 

  15. Yu H, Guo Z, Li B, Yao G, Luo H, Liu Y (2007) Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties. Mater Sci Eng A 454–455:542–546 doi:10.1016/j.msea.2006.11.091.

    Google Scholar 

  16. Montanini R (2005) Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int J Mech Sci 47:26–42 doi:10.1016/j.ijmecsci.2004.12.007.

    Article  Google Scholar 

  17. Yu JL, Li JR, Hu SS (2006) Strain-rate effect and micro-structural optimization of cellular metals. Mech Mater 38:160–170 doi:10.1016/j.mechmat.2005.05.018.

    Article  Google Scholar 

  18. Wang Z, Ma H, Zhao L, Yang G (2006) Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scripta Materialia 54:83–87.

    Google Scholar 

  19. Mamalis AG, Robinson M, Manolakos DE, Demosthenous GA, Ioannidis MB, Carruthers J (1997) Crashworthy capability of composite material structures. Compos Struct 37:109–134 doi:10.1016/S0263-8223(97)80005-0.

    Article  Google Scholar 

  20. Ohrndorf A, Schmidt P, Krupp U, Christ HJ (2000) Mechanische Untersuchungen eines geschlossenporigen Aluminiumschaums. In: Proceedings Werkstoffprüfung 2000.

  21. Deshpande VS, Fleck NA (2000) High strain rate compressive behaviour of aluminium alloy foams. Int J Impact Eng 24:277–298 doi:10.1016/S0734-743X(99)00153-0.

    Article  Google Scholar 

  22. Shim VPW, Yap KY (1997) Modelling impact deformation of foam-plate sandwich systems. Int J Impact Eng 19:615–636 doi:10.1016/S0734-743X(96)00049-8.

    Article  Google Scholar 

  23. Ren Z, Vesenjak M, Öchsner A (2008) Behaviour of cellular structures under impact loading: a computational study. Mat Sci Forum 566:53–60.

    Article  Google Scholar 

  24. Vesenjak M, Krstulovič-Opara L, Öchsner A, Ren Z, Domazet Ž (2006) Experimental and numerical modelling of open-cell cellular structures. In: Proceedings 5th International congress of Croatian Society of Mechanics, pp 8.

  25. Öchsner A, Kuhn G, Grácio J (2005) Investigation of cellular solids under biaxial stress states. Exp Mech 45:325–330.

    Google Scholar 

  26. Oberg E, Jones FD, Horton HL, Ryffel HH (2000) Machinery’s handbook. Industrial Press, New York.

    Google Scholar 

Download references

Acknowledgements

The financial support from the Croatian–Slovenian bilateral research project “Modelling and development of materials with open cellular structure” and the postdoctoral project “Computational modelling of cellular structures under multiaxial impact conditions” supported by the Slovenian Research Agency is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vesenjak.

Additional information

This paper was presented during the Advanced Computational Engineering and Experimenting ACE-X 2007 Conference, Portugal, July 12–13, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesenjak, M., Krstulović-Opara, L., Ren, Z. et al. Experimental Study of Open-Cell Cellular Structures with Elastic Filler Material. Exp Mech 49, 501–509 (2009). https://doi.org/10.1007/s11340-008-9183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9183-8

Keywords

Navigation