Skip to main content
Log in

Kinematic Fields and Acoustic Emission Observations Associated with the Portevin Le Châtelier Effect on an Al–Mg Alloy

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents experimental tensile test results obtained on flat aluminum magnesium alloy samples on a hard machine. The mechanical response, kinematic fields and acoustic emissions were simultaneously obtained in an experimental setup. Propagation instabilities associated with the Portevin–Le-Châtelier effect were observed as localized intense strain increment bands. Depending on the strain rate, A, B or C types were studied on the basis of stress drops, acoustic emission and strain fields. Then the band characteristics (position, orientation, width, thickness reduction, intensity, acoustic emission, principal strain direction) were presented in various strain rate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Portevin A, Le Châtelier F (1923) Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. C R Acad Sci Paris 176:507–510.

    Google Scholar 

  2. Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon, Oxford.

    MATH  Google Scholar 

  3. Hall EO (1970) Yield point phenomena in metals and alloys. Macmillan, London.

    Google Scholar 

  4. Chihab K, Estrin Y, Kubin LP, Vergnol J (1987) Kinetics of the Portevin–Le Châtelier in an Al-5atMg alloy. Scr Metall 21:203–208.

    Article  Google Scholar 

  5. Kubin LP, Fressengeas C, Ananthakrishna G (2002) Collective behaviour of dislocations in plasticity. In: Nabarro FRN, Duesbery MS (eds) Dislocations in solids. Elsevier, Amsterdam, 11:pp 101–192.

    Chapter  Google Scholar 

  6. McCormick PG, Venkadesan S, Ling CP (1993) Propagative instabilities: an experimental view. Scr Metall Mater 29:1159–1164.

    Article  Google Scholar 

  7. Wack B, Tourabi A (1995) A new method to quantify the Portevin–Le Chatelier instabilities: application to aluminium–lithium alloys. Mater Sci Eng A 196:79–87.

    Article  Google Scholar 

  8. Chihab K, Ait-Amokhtar H, Bouabdellah K (2002) Serrated yielding due to Portevin–Le Châtelier effect in commercial Al–Mg alloys. Ann Chim 27:69–75.

    Google Scholar 

  9. Bharathi MS, Lebyodkin M, Ananthakrishna G, Fressengeas C, Kubin LP (2001) Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys Rev Lett 8716:165508.

    Article  Google Scholar 

  10. Bharathi MS, Rajesh S, Ananthakrishna G (2003) A dynamical model for the Portevin–Le Chatelier bands. Scr Metall 48:1355–1260.

    Article  Google Scholar 

  11. Ziegenbein A, Hähner P, Neuhäuser H (2000) Correlation of temporal instabilities and spatial localization during Portevin–LeChatelier deformation of Cu–10 at.% Al and Cu–15 at.% Al. Comput Mater Sci 19:27–34.

    Article  Google Scholar 

  12. Ziegenbein A, Hähner P, Neuhäuser H (2001) Propagating Portevin–LeChatelier deformation bands in Cu–15 at.% Al polycrystals: experiments and theoretical description. Mater Sci Eng A 309–310:336–339.

    Google Scholar 

  13. Lebyodkin M, Dunin-Barkowskii L, Brechet Y, Estrin Y, Kubin L (2000) Spatio-temporal dynamics of the Portevin–Le Chatelier effect: experiment and modelling. Acta Mater 48:2529–2541.

    Article  Google Scholar 

  14. Kok S, Beaudoin AJ, Tortelli A, Lebyodkin M (2002) A finite element model for the Portevin–Le Chatelier effect based on polycrystal plasticity. Model Simul Mater Sci Eng 10:745–763.

    Article  Google Scholar 

  15. Wijler A, Van den Beukel A (1970) Mobile dislocation density during inhomogeneous deformation in Au(14at%Cu). Scr Metall 4, 9:705–708.

    Article  Google Scholar 

  16. Schade J, Van Westrum A, Wijler A (1973) Determination of the characteristics of Portevin_Le-Châtelier bands in Au (14. at %Cu). Acta Metall 21:1079–1086.

    Article  Google Scholar 

  17. Casarotto L, Tutsch R, Ritter R, Dierke H, Klose F, Neuhaüser H (2005) Investigation of PLC bands with optical techniques. Comput Mater Sci 32:316–322.

    Article  Google Scholar 

  18. Shabadi C, Kumar S, Roven HJ, Dwarakadasa ES (2004) Characterisation of PLC band parameters using laser speckle technique. Mater Sci Eng A 364:140–150.

    Article  Google Scholar 

  19. Tong W, Tao H, Zhang N, Hector LG (2005) Time-resolved strain mapping measurements of individual Portevin–Le Chatelier deformation bands. Scr Mater 53:87–92.

    Article  Google Scholar 

  20. Zhang QC, Jiang Z, Jiang H, Chen Z, Wu XP (2005) On the propagation and pulsation of Portevin–Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology. Int J Plast 21:2150–2173.

    Article  MATH  Google Scholar 

  21. Xiang GF, Zhang QC, Liu HW, Wu XP, Ju XY (2007) Time-resolved deformation measurements of the Portevin–Le Chatelier bands. Scr Mater 56:721–724.

    Article  Google Scholar 

  22. Halim H, Wilkinson DS, Niewczas M (2007) The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater 55:4151–4160.

    Article  Google Scholar 

  23. Pascual R (1974) Acoustic emission and dislocation multiplication during serrated flow of an aluminum alloy. Scr Metall 8:1461–1466.

    Article  Google Scholar 

  24. Caceres CH, Rodriguez AH (1987) Acoustic emission and deformation bands in Al–2.5% Mg Cu–30% Zn. Acta Metall 35:2851–2864.

    Article  Google Scholar 

  25. Chmelík F, Trojanová Z, Převorovský Z, Lukáč P (1993) The Portevin–Le Châtelier Effect in Al–2.92%Mg–0.38%Mn alloy and linear location of acoustic emission. Mater Sci Eng A 164:260–265.

    Article  Google Scholar 

  26. Reed JM, Walter ME (2003) Observations of serration characteristics and acoustic emission during serrated flow of an Al–Mg alloy. Mater Sci Eng A 359:1–10.

    Article  Google Scholar 

  27. Chmelík F, Ziegenbein A, Neuhäuser H, Lukác P (2002) Investigating the Portevin–Le Châtelier effect by the acoustic emission and laser extensometry techniques. Mater Sci Eng A 324:200–207.

    Article  Google Scholar 

  28. Chmelik F, Klose FB, Dierke H, Šachl J, Neuhäuser H, Lukáč P (2007) Investigating the Portevin–Le Châtelier effect in strain rate and stress rate controlled tests by the acoustic emission and laser extensometry techniques. Mat Sci Eng A 462:53–60.

    Article  Google Scholar 

  29. Ait-Amokhtar H, Vacher P, Boudrahem S (2006) Kinematics fields and spatial activity of Portevin–Le Chatelier bands using the digital image correlation method. Acta Mater 54:4365–4371.

    Article  Google Scholar 

  30. Louche H, Vacher P, Arrieux R (2005) Thermal observations associated with the Portevin–Le Châtelier effect in an Al–Mg alloy. Mater Sci Eng A 404:188–196.

    Article  Google Scholar 

  31. Peters WH, Ranson WF (1981) Digital image techniques in experimental stress analysis. Opt Eng 21:427–441.

    Google Scholar 

  32. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1:133–139.

    Article  Google Scholar 

  33. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244.

    Article  Google Scholar 

  34. Vacher P, Dumoulin S, Morestin F,Mguil-Touchal S (1999) Bidimensional deformation measurement using digital images. Proc Inst Mech Engrs 213:811–817.

    Google Scholar 

  35. Coudert T (2005) Reconstruction tridimensionnelle du volume intérieur d’une chaussure, évaluation du chaussant. Ph.D. thesis, Université de Savoie, Annecy, France.

  36. Dumont F (2003) Contribution à l’expérimentation et à la modélisation de renforts composites tissés. Ph.D. thesis, Université Paris 6, Orléans, France.

  37. Orteu JJ (2007) Digital image error correlation (DIC) assessment. SEM Annual Conference, Springfield, MA, USA, June 4–6.

  38. Bornert M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert R, Surrel Y, Vacher P, Wattrisse B (2008) Assessment of digital image correlation software packages. Exp Mech (in press).

  39. Gaudin V (2007) Contribution à l’étude de micromuscles artificiels activables par pression osmotique et implantables en milieu biologique. Ph.D. thesis, Université Joseph Fourier, Grenoble, France.

  40. Kubin LP, Estrin Y (1985) The Portevin Le Chatelier effect in deformation with constant stress rate. Acta Metall 33:397–407.

    Article  Google Scholar 

  41. Balik J (2001) The onset of Portevin–Le-Chatelier instabilities in tensile testing. Mater Sci Eng A 316:102–108.

    Article  Google Scholar 

  42. D’Anna G, Nori F (2001) Critical dynamics of burst instabilities in the Portevin–Le Châtelier effect. Phys Rev Lett 85:4096–4099.

    Google Scholar 

  43. Bouabdallah K (2006) Caractérisation de l’effet Portevin–Le Châtelier dans les alliages aluminium magnésium—Apport des techniques d’analyse d’images. Ph.D. thesis, Université de Savoie, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Louche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louche, H., Bouabdallah, K., Vacher, P. et al. Kinematic Fields and Acoustic Emission Observations Associated with the Portevin Le Châtelier Effect on an Al–Mg Alloy. Exp Mech 48, 741–751 (2008). https://doi.org/10.1007/s11340-008-9125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9125-5

Keywords

Navigation