Experimental Mechanics

, Volume 49, Issue 1, pp 135–151 | Cite as

Microfabricated Force Sensors and Their Applications in the Study of Cell Mechanical Response

Article

Abstract

Living cells are sensitive to their mechanical environments and they transduce mechanical stimuli into biological responses. Developing suitable experimental techniques is essential to explore the question on how cells respond to mechanical stimuli. The current major techniques normally induce small cell deformations and measure their corresponding cell force response (small) in the range of 1 pN to 10nN. However, in many physiological conditions, cell deformations can be large (comparable to the cell sizes) inducing large force response. In order to explore cell mechanical behavior under large deformations, we introduce a class of microfabricated force sensors. The sensors, consisting of a probe and flexible beams, normally measure cell force response in the range of 1nN to 1μN. Both the one- and two-component force sensors have been developed, and have been used in cell experiments. These experiments showed the versatility of the force sensors. Representative experimental results on cell stretch force response, cell indentation force response, and in situ observation of the actin cytoskeleton during indentation, will be given. These results provide significant insight on cell mechanical response under large deformations.

Keywords

Cell mechanics BioMEMS (bio micro electro mechanical systems) Force sensors Large deformation Actin 

References

  1. 1.
    Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11):715–725.CrossRefGoogle Scholar
  2. 2.
    Vogel V (2006) Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488.CrossRefGoogle Scholar
  3. 3.
    Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827.CrossRefGoogle Scholar
  4. 4.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127.CrossRefGoogle Scholar
  5. 5.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428.CrossRefGoogle Scholar
  6. 6.
    Balaban NQ et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472.CrossRefGoogle Scholar
  7. 7.
    Suresh S et al (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30.Google Scholar
  8. 8.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.Google Scholar
  9. 9.
    Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51(19):5881–5905.CrossRefGoogle Scholar
  10. 10.
    Silver FH (1987) Biological materials: Structure, mechanical properties, and modeling of soft tissues. New York, University Press.Google Scholar
  11. 11.
    Maurel W, Wu Y, Magnenat Thalmann N, Thalmann D (1998) Biomechanical models for soft tissue simulation. Springer-Verlag, Berlin.Google Scholar
  12. 12.
    Pfister BJ, Weihs TP, Betenbaugh M, Bao G (2003) An in vitro uniaxial stretch model for axonal injury. Ann Biomed Eng 31(5):589–598.CrossRefGoogle Scholar
  13. 13.
    Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118.CrossRefGoogle Scholar
  14. 14.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489.CrossRefGoogle Scholar
  15. 15.
    du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395.CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Lim CC, Sawyer DB, Liao R, Zhang X (2005) Cellular force measurements using single-spaced polymeric microstructures: isolating cells from base substrate. J Micromech Microeng 15(9):1649–1656.CrossRefGoogle Scholar
  17. 17.
    Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34(1):59–74.CrossRefGoogle Scholar
  18. 18.
    Zimerman B, Arnold M, Ulmer J, Blummel J, Besser A, Spatz JP, Geiger B (2004) Formation of focal adhesion-stress fibre complexes coordinated by adhesive and non-adhesive surface domains. IEE Proc-Nanobiotechnol 151(2):62–66.CrossRefGoogle Scholar
  19. 19.
    Chen CS, Jiang X, Whitesides GM (2005) Microengineering the environment of mammalian cells in culture. MRS Bulletin 30(3):194–201.Google Scholar
  20. 20.
    Gallant ND, Michael KE, Garcia AJ (2005) Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 16(9):4329–4340.CrossRefGoogle Scholar
  21. 21.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8):2480–2487.CrossRefGoogle Scholar
  22. 22.
    Kim DH, Kim P, Song I, Cha JM, Lee SH, Kim B, Suh KY (2006) Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir 22(12):5419–5426.CrossRefGoogle Scholar
  23. 23.
    Steinberg T, Schulz S, Spatz JP, Grabe N, Mussig E, Kohl A, Komposch G, Tomakidi P (2007) Early keratinocyte differentiation on micropillar interfaces. Nano Letters 7(2):287–294.CrossRefGoogle Scholar
  24. 24.
    Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974.CrossRefGoogle Scholar
  25. 25.
    Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4(2):91–97.CrossRefGoogle Scholar
  26. 26.
    Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102(44):15757–15761.CrossRefGoogle Scholar
  27. 27.
    El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411.CrossRefGoogle Scholar
  28. 28.
    Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5(3):209–218.CrossRefGoogle Scholar
  29. 29.
    Yang S, Saif T (2005) Micromachined force sensors for the study of cell mechanics. Rev Sci Instrum 76(4):044301.CrossRefGoogle Scholar
  30. 30.
    Yang S, Saif MTA (2007) MEMS based force sensors for the study of indentation response of single living cells. Sens Actuat A 135(1):16–22.CrossRefGoogle Scholar
  31. 31.
    Shaw KA, Zhang ZL, MacDonald NC (1994) SCREAM-I: a single mask, single crystal silicon, reactive etching process for microelectromechanical structures. Sens Actuat A 40(1):63–70.CrossRefGoogle Scholar
  32. 32.
    Yamamoto A, Mishima S, Maruyama N, Sumita M (1998) A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials 19(7–9):871–879.CrossRefGoogle Scholar
  33. 33.
    Yang S, Saif T (2005) Reversible and repeatable linear local cell force response under large stretches. Exp Cell Res 305(1):42–50.CrossRefGoogle Scholar
  34. 34.
    Petersen NO, McConnaughey WB, Elson EL (1982) Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci USA 79(17):5327–5331.CrossRefGoogle Scholar
  35. 35.
    Touhami A, Nysten B, Dufrene YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19(11):4539–4543.CrossRefGoogle Scholar
  36. 36.
    Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110(17):2109–2116.Google Scholar
  37. 37.
    An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ (2002) Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 283(3):C792–C801.Google Scholar
  38. 38.
    Hayashi K (2003) Mechanical properties of soft tissues and arterial walls. In: GA Holzapfel, RW Ogden (eds) Biomechanics of soft Tissue in Cardiovascular System. Springer Wien, New York, pp 15–64.Google Scholar
  39. 39.
    Yang S, Saif MTA (2007) Force response and actin remodeling (agglomeration) in fibroblasts due to lateral indentation. Acta Biomater 3(1):77–87.CrossRefGoogle Scholar
  40. 40.
    Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci 20(1):22–33.Google Scholar
  41. 41.
    Niciforovic A, Radojcic MB, Milosavljevic BH (2004) Gamma-radiation induced agglomeration of chicken muscle myosin and actin. J Serb Chem Soc 69(12):999–1004.CrossRefGoogle Scholar
  42. 42.
    Gerisch G, Bretschneider T, Muller-Taubenberger A, Simmeth E, Ecke M, Diez S, Anderson K (2004) Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophy J 87(5):3493–3503.CrossRefGoogle Scholar
  43. 43.
    Ashworth SL, Southgate EL, Sandoval RM, Meberg PJ, Bamburg JR, Molitoris BA (2003) ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. Am J Physiol Renal Physiol 28(44):F852–F862.Google Scholar
  44. 44.
    Schmidt Capella IC, Hartfelder K (2002) Juvenile-hormone-dependent interaction of actin and spectrin is crucial for polymorphic differentiation of the larval honey bee ovary. Cell Tissue Res 307(2):265–272.CrossRefGoogle Scholar
  45. 45.
    Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82(6):2970–2981.CrossRefGoogle Scholar
  46. 46.
    Feneberg W, Aepfelbacher M, Sackmann E (2004) Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers. Biophys J 87(2):1338–1350.CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical and Aerospace Engineering, Florida Institute of Technology150 West University BoulevardMelbourneUSA

Personalised recommendations