Skip to main content
Log in

Dissecting the Molecular Basis of the Mechanics of Living Cells

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Cells establish and modulate their morphology and mechanics through the use of structural networks whose components range in size from a few nanometers to tens of micrometers. Over the past two decades, an exciting suite of sophisticated micro- and nanoscale technologies has emerged that permits investigators to directly probe structural and functional contributions of these components in living cells. Here we review underlying principles and recent applications of four such approaches: atomic force microscopy, subcellular laser ablation, micropatterning, and microfluidics. Together, these new tools are offering valuable insight into the molecular basis of cell structure and mechanics and revealing the remarkably broad influence of the mechanical microenvironment on many aspects of cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McBeath R, Pirone DM, Nelson CM, Bahadiraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495.

    Article  Google Scholar 

  2. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689.

    Article  Google Scholar 

  3. Hayakawa K, Tatsumi H, Sokabe M (2002) Mechanical stress in the actin cytoskeleton activates SA channels in the vicinity of focal adhesions in endothelial cells. Mol Biol Cell 13:340A.

    Google Scholar 

  4. Kasas S et al (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskelet 62:124–132.

    Article  Google Scholar 

  5. Smith PG, Deng LH, Fredberg JJ, Maksym GN (2003) Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol Lung Cell Mol Physiol 285:L456–L463.

    Google Scholar 

  6. Puig-de-Morales M, Millet E, Fabry B, Navajas D, Wang N, Butler JP, Fredberg JJ (2004) Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am J Physiol Cell Physiol 287:C643–C654.

    Article  Google Scholar 

  7. Kumar S, Hoh JH (2001) Probing the machinery of intracellular trafficking with the atomic force microscope. Traffic 2:746–756.

    Article  Google Scholar 

  8. Pesen D, Hoh JH (2005) Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Lett 579:473–476.

    Article  Google Scholar 

  9. Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679.

    Article  Google Scholar 

  10. Oberhauser AF, Badilla-Fernandez C, Carrion-Vasquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447.

    Article  Google Scholar 

  11. Bernheim-Groswasser A, Wiesner S, Golsteyn RM, Carlier MF, Sykes C (2002) The dynamics of actin-based motility depend on surface parameters. Nature 417:308–311.

    Article  Google Scholar 

  12. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A 96:921–926.

    Article  Google Scholar 

  13. A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S, Schoenenberger CA, Hoh JH (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578.

    Article  Google Scholar 

  14. Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981.

    Article  Google Scholar 

  15. Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA (2005) Loading history determines the velocity of actin-network growth. Nat Cell Biol 7:1219–1223.

    Article  Google Scholar 

  16. Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445:295–298.

    Article  Google Scholar 

  17. Prass M, Jacobson K, Mogilner A, Radmacher M (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174:767–772.

    Article  Google Scholar 

  18. Oliver T, Dembo M, Jacobson K (1999) Separation of propulsive and adhesive traction stresses in locomoting keratocytes. J Cell Biol 145:589–604.

    Article  Google Scholar 

  19. Koonce MP, Strahs KR, Berns MW (1982) Repair of laser-severed stress fibers in myocardial non-muscle cells. Exp Cell Res 141:375–384.

    Article  Google Scholar 

  20. Berns MW et al (1981) Laser microsurgery in cell and developmental biology. Science 213:505–513.

    Article  Google Scholar 

  21. Strahs KR, Berns MW (1979) Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart. Exp Cell Res 119:31–45.

    Article  Google Scholar 

  22. Burt JM, Strahs KR, Berns MW (1979) Correlation of cell surface alterations with contractile response in laser microbeam irradiated myocardial cells. A scanning electron microscope study. Exp Cell Res 118:341–351.

    Article  Google Scholar 

  23. Strahs KR, Burt JM, Berns MW (1978) Contractility changes in cultured cardiac cells following laser microirradiation of myofibrils and the cell surface. Exp Cell Res 113:75–83.

    Article  Google Scholar 

  24. Heisterkamp A, Maxwell IZ, Mazur E, Underwood JM, Nickerson JA, Kumar S, Ingber DE (2005) Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Express 13:3690–3696.

    Article  Google Scholar 

  25. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887.

    Article  Google Scholar 

  26. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254.

    Article  Google Scholar 

  27. Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell rigidity in a biphasic fashion. J Cell Physiol 204:198–209.

    Article  Google Scholar 

  28. Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM (2007) Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 9:299–309.

    Article  Google Scholar 

  29. Peterson LJ, Rajfur Z, Maddox AS, Freel CD, Chen Y, Edlund M, Otey C, Burridge K (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell 15:3497–3508.

    Article  Google Scholar 

  30. Sanger JW, Sanger JM (1979) The cytoskeleton and cell division. Methods Achiev Exp Pathol 8:110–142.

    Google Scholar 

  31. Kano Y, Katoh K, Fujiwara K (2000) Lateral zone of cell-cell adhesion as the major fluid shear stress-related signal transduction site. Circ Res 86:425–433.

    Google Scholar 

  32. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90:3762–3773.

    Article  Google Scholar 

  33. Khodjakov A, La Terra S, Chang F (2004) Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B. Curr Biol 14:1330–1340.

    Article  Google Scholar 

  34. Tolic-Norrelykke IM, Sacconi L, Thon G, Pavone FS (2004) Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 14:1181–1186.

    Article  Google Scholar 

  35. Botvinick EL, Venugopalan V, Shah JV, Liaw LH, Berns MW (2004) Controlled ablation of microtubules using a picosecond laser. Biophys J 87:4203–4212.

    Article  Google Scholar 

  36. Parker KK et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16:1195–1204.

    Article  Google Scholar 

  37. Lele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE (2006) Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol 207:187–194.

    Article  Google Scholar 

  38. Nowotny M, Gummer AW (2006) Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci U S A 103:2120–2125.

    Article  Google Scholar 

  39. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119:508–518.

    Article  Google Scholar 

  40. Wang YX, Botvinick EL, Zhao YH, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045.

    Article  Google Scholar 

  41. Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370.

    Article  Google Scholar 

  42. Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386–1389.

    Article  Google Scholar 

  43. Kim YS, Park J, Lee HH (2002) Three-dimensional pattern transfer and nanolithography: modified soft molding. Appl Phys Lett 81:1011–1013.

    Article  Google Scholar 

  44. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87.

    Article  Google Scholar 

  45. Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J Phys D Appl Phys 37:R123–R141.

    Article  Google Scholar 

  46. McAlpine MC, Friedman RS, Lieber DM (2003) Nanoimprint lithography for hybrid plastic electronics. Nano Lett 3:443–445.

    Article  Google Scholar 

  47. Thatcher RW, Gomez-Molina JF, Biver C, North D, Curtin R, Walker RW (2000) Two compartmental models of EEG coherence and MRI biophysics. Behav Brain Sci 23:412.

    Article  Google Scholar 

  48. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM, Ingber DE (1994) Engineering cell shape and function. Science 264:696–698.

    Article  Google Scholar 

  49. Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070.

    Article  Google Scholar 

  50. Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–414.

    Article  Google Scholar 

  51. LeDuc P, Ostuni E, Whitesides G, Ingber D (2002) Use of micropatterned adhesive surfaces for control of cell behavior. Methods Cell Biol 69:385–401.

    Article  Google Scholar 

  52. Voldman J, Gray ML, Schmidt MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Engr 1:401–425.

    Article  Google Scholar 

  53. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551–575.

    Article  Google Scholar 

  54. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Engr 3:335–373.

    Article  Google Scholar 

  55. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100:1484–1489.

    Article  Google Scholar 

  56. Wang N, Ostuni E, Whitesides GM Ingber DE (2002) Micropatterning tractional forces in living cells. Cell Motil Cytoskelet 52:97–106.

    Article  Google Scholar 

  57. Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A 103:16095–16100.

    Article  Google Scholar 

  58. Kenis PJ, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85.

    Article  Google Scholar 

  59. Beebe DJ, Mensing GA Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Engr 4:261–286.

    Article  Google Scholar 

  60. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10:123–130.

    Article  Google Scholar 

  61. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Subcellular positioning of small molecules. Nature 411:1016.

    Article  Google Scholar 

  62. Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830.

    Google Scholar 

  63. Kuczenski B, LeDuc PR, Messner WC (2007) Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab. Chip. 7:647–649.

    Article  Google Scholar 

Download references

Acknowledgement

S. K. acknowledges the generous support of the Arnold and Mabel Beckman Foundation and the University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. LeDuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., LeDuc, P.R. Dissecting the Molecular Basis of the Mechanics of Living Cells. Exp Mech 49, 11–23 (2009). https://doi.org/10.1007/s11340-007-9063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9063-7

Keywords

Navigation