Skip to main content
Log in

A Non-linear Algorithm of Photoelastic Tomography for the Axisymmetric Problem

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A non-linear algorithm of photoelastic tomography for the measurement of axisymmetric stress fields has been elaborated. It is free of any assumptions concerning the value of the birefringence or rotation of the principal stress axes along the light rays. The algorithm is based on the measurement of characteristic directions and phase retardation in two parallel sections of the test object. Stress components are presented in the form of power series along the radial coordinate. A differential evolution algorithm has been used for finding the stress field parameters, which fit the measurement data best. Application of the method is illustrated by residual stress measurement in a drinking glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Weller R (1939) A new method for photoelasticity in three dimensions. J Appl Phys 10:266.

    Article  Google Scholar 

  2. Srinath LS (1983) Scattered light photoelasticity. Tata McGraw-Hill, New Delhi.

    Google Scholar 

  3. Kobayashi AS (ed) (1987) Handbook on experimental mechanics. Prentice-Hall, Englewood Cliffs.

  4. Robert A, Guillemet E (1963) Nouvelle méthode d’utilisation de la lumière diffusée en photoélasticimétrie a trois dimensions. Rev Franç Méc 5/6:147–157.

    Google Scholar 

  5. Desally R, Lagarde A (1977) Rectilinear and circular analysis of a plane slice optically isolated in a three-dimensional photoelastic model. Mech Res Comm 4:99–107.

    Article  Google Scholar 

  6. Bilek A, Brémand F, Dupré JC (2004) Studies of contact problems by 3D photoelasticity, comparison with finite element analysis. In: Proceedings of the 12th International Conference on Experimental Mechanics, pp 24–25, Bari, Italy.

  7. Kihara T (2004) Photoelastic model measurement with rotated principal axes by scattered-light photoelasticity. Exp Mech 44:455–460.

    Article  Google Scholar 

  8. Herman CT (1980) Image reconstruction from projections. Academic, New York.

    MATH  Google Scholar 

  9. Natterer F (1986) The mathematics of computerized tomography. Teubner, Stuttgart.

    MATH  Google Scholar 

  10. Proceedings of 1st World Congress on Industrial Process Tomography (1999), Buxton.

  11. Sharafutdinov VA (1994) Integral geometry of tensor fields. VSP, Utrecht.

    Google Scholar 

  12. Aben H (1979) Integrated photoelasticity. McGraw-Hill, New York.

    Google Scholar 

  13. Sharafutdinov V (1989) On integrated photoelasticity in case of weak birefringence. Proc Est Acad Sci Phys Math 38:379–389.

    MathSciNet  Google Scholar 

  14. Aben H, Idnurm S, Puro A (1990) Integrated photoelasticity in case of weak birefringence. In: Proceedings 9th International Conference on Experimental Mechanics, pp 867–875, Copenhagen.

  15. Aben H, Idnurm S, Josepson J, Kell K-J, Puro A (1991) Optical tomography of the stress tensor field. In: Levin GG (ed) Analytical methods for optical tomography. Proc. SPIE 1843:220–229.

  16. Aben H, Errapart A, Ainola L, Anton J (2005) Photoelastic tomography for residual stress measurement in glass. Opt Eng 44:1–8 (093601).

    Google Scholar 

  17. Aben H, Guillemet C (1993) Photoelasticity of glass. Springer, Berlin.

    Google Scholar 

  18. Aben HK, Josepson JI, Kell K-J (1989) The case of weak birefringence in integrated photoelasticity. Opt Lasers Eng 11:145–157.

    Article  Google Scholar 

  19. Dash CJ (1992) One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl Opt 31:1146–1152.

    Google Scholar 

  20. Doyle JF, Danyluk HT (1978) Integrated photoelasticity for axisymmetric problems. Exp Mech 18:156–220.

    Google Scholar 

  21. Schupp D (1999) Optische Tensortomographie zur Bestimmung räumlicher Spannungsverteilungen. Tech Mess 66:54–60.

    Google Scholar 

  22. Aben H, Errapart A, Ainola L (2006) On real and imaginary algorithms of optical tensor field tomography. Proc Est Acad Sci Phys Math 55:112–127.

    MATH  MathSciNet  Google Scholar 

  23. Mangal SK, Ramesh K (1999) Determination of characteristic parameters in integrated photoelasticity by phase-shifting technique. Opt Lasers Eng 31:263–278.

    Article  Google Scholar 

  24. Tomlinson R, Patterson EA (2002) The case of phase-stepping for the measurement of characteristic parameters in integrated photoelasticity. Exp Mech 42:43–50.

    Article  Google Scholar 

  25. Aben H, Ainola L, Anton J (1999) Half-fringe phase-stepping with separation of the principal stress directions. Proc Est Acad Sci Eng 5:198–211.

    Google Scholar 

  26. Andirenko YA, Dubovikov MS (1994) Optical tomography of tensor fields. J Opt Soc Am A11:1628–1631.

    Article  Google Scholar 

  27. Berezhna SYu, Berezhnyi IV, Vlokh OG (1994) Optical tomography of anisotropic inhomogeneous medium. In: Proceedings 10th Int Conf on Exp Mech, vol 1, pp 431–435, Lisboa, Portugal.

  28. Wijerathne MLL, Oguni K, Hori M (2002) Tensor field tomography based on 3D photoelasticity. Mech Mater 34:535–545.

    Article  Google Scholar 

  29. Puro AE (1996) On tomographic magnetophotoelasticity. Opt Spectrosc 81:119–125.

    Google Scholar 

  30. Wijerathne MLL, Oguni K, Hori M (2004) Inverse analysis method for photoelastic measurement of 3D stress state. Key Eng Mater 261(2):753–758.

    Google Scholar 

  31. Aben H, Ainola L, Puro A (1996) Photoelastic residual stress measurement in glass articles as a problem of hybrid mechanics. In: Proceedings 17th Symposium on Exp Mech of Solids, pp 1–10, Jachranka, Poland.

  32. Ainola L, Aben H (2000) Hybrid mechanics for axisymmetric thermoelasticity problems. J Therm Stress 23:685–697.

    Article  Google Scholar 

  33. Ainola L, Aben H (2004) A new relationship for the experimental–analytical solution of the axisymmetric thermoelasticity problem. ZAMM 84:211–215.

    Article  MATH  MathSciNet  Google Scholar 

  34. Price KV, Storn RM, Lampinen JA (2005) Differential evolution, a practical approach to global optimisation. Springer, Berlin.

    Google Scholar 

  35. Theocaris PS, Gdoutos EE (1979) Matrix theory of photoelasticity. Springer, Berlin.

    Google Scholar 

Download references

Acknowledgements

Support of the Estonian Science Foundation (grant no. 6881) is gratefully acknowledged. The authors thank Jelena Sanko for consultations concerning the differential evolution method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aben, H., Errapart, A. A Non-linear Algorithm of Photoelastic Tomography for the Axisymmetric Problem. Exp Mech 47, 821–830 (2007). https://doi.org/10.1007/s11340-007-9057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9057-5

Keywords

Navigation