Skip to main content
Log in

Variational Estimation for Multidimensional Generalized Partial Credit Model

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap, this paper presents a novel Gaussian variational estimation algorithm for the multidimensional generalized partial credit model. The proposed algorithm demonstrates both fast and accurate performance, as illustrated through a series of simulation studies and two real data analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andersson, B., & Xin, T. (2021). Estimation of latent regression item response theory models using a second-order Laplace approximation. Journal of Educational and Behavioral Statistics, 46(2), 244–265.

    Article  Google Scholar 

  • Blei, D. M., & Jordan, M. I. (2006). Variational inference for Dirichlet process mixtures. Journal of Bayesian Analysis, 1(1), 121–143.

    MathSciNet  Google Scholar 

  • Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), 859–877.

    Article  MathSciNet  CAS  Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459.

    Article  MathSciNet  Google Scholar 

  • Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261–280.

    Article  Google Scholar 

  • Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.

    Article  Google Scholar 

  • Cagnone, S., & Monari, P. (2013). Latent variable models for ordinal data by using the adaptive quadrature approximation. Computational Statistics, 28, 597–619.

    Article  MathSciNet  Google Scholar 

  • Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75(1), 33–57.

    Article  MathSciNet  Google Scholar 

  • Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29.

    Article  Google Scholar 

  • Chang, H.-H., & Stout, W. (1993). The asymptotic posterior normality of the latent trait in an IRT model. Psychometrika, 58(1), 37–52.

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Li, X., & Zhang, S. (2019). Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis. Psychometrika, 84(1), 124–146.

    Article  MathSciNet  PubMed  Google Scholar 

  • Cho, A. E., Wang, C., Zhang, X., & Xu, G. (2021). Gaussian variational estimation for multidimensional item response theory. British Journal of Mathematical and Statistical Psychology, 74, 52–85.

    Article  PubMed  Google Scholar 

  • Cho, A. E., Xiao, J., Wang, C., & Xu, G. (2022). Regularized variational estimation for exploratory item factor analysis. Psychometrika.

  • Costa, P. T., & McCrae, R. R. (2008). The revised NEO personality inventory (NEO-PI-R). The SAGE Handbook of Personality Theory and Assessment, 2(2), 179–198.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, pp. 54–75.

  • Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.

  • Feuerstahler, L. M., & Waller, N. G. (2014). Estimation of the 4-parameter model with marginal maximum likelihood. Multivariate Behavioral Research, 49(3), 285.

    Article  PubMed  Google Scholar 

  • Fishbein, B., Martin, M. O., Mullis, I. V., & Foy, P. (2018). The TIMSS 2019 item equivalence study: Examining mode effects for computer-based assessment and implications for measuring trends. Large-Scale Assessments in Education, 6(1), 1–23.

    Article  Google Scholar 

  • Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4(1), 26–42.

    Article  Google Scholar 

  • Goldberg, L. R., et al. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. Personality Psychology in Europe, 7(1), 7–28.

    Google Scholar 

  • Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17(1), 65–70.

    Article  Google Scholar 

  • Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1), 25–37.

    Article  Google Scholar 

  • Kim, J., & Wilson, M. (2020). Polytomous item explanatory item response theory models. Educational and Psychological Measurement, 80(4), 726–755.

    Article  PubMed  Google Scholar 

  • Lindstrom, M. J., & Bates, D. M. (1988). Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404), 1014–1022.

    MathSciNet  Google Scholar 

  • Martin, M. O., & Mullis, I. V. (2019). TIMSS 2015: Illustrating advancements in large-scale international assessments. Journal of Educational and Behavioral Statistics, 44(6), 752–781.

    Article  Google Scholar 

  • Martin, M. O., von Davier, M., & Mullis, I. V. (2020). Methods and procedures: TIMSS 2019 technical report. International Association for the Evaluation of Educational Achievement.

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  Google Scholar 

  • McCrae, R. R., Zonderman, A. B., Costa, P. T., Jr., Bond, M. H., & Paunonen, S. V. (1996). Evaluating replicability of factors in the revised NEO personality inventory: Confirmatory factor analysis versus procrustes rotation. Journal of Personality and Social Psychology, 70(3), 552–566.

    Article  Google Scholar 

  • Meng, X., Xu, G., Zhang, J., & Tao, J. (2020). Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework. British Journal of Mathematical and Statistical Psychology, 73, 51–82.

    Article  PubMed  Google Scholar 

  • Mullis, I. V. & Martin, M. O. (2017). TIMSS 2019 assessment frameworks. ERIC.

  • Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16(2), 159–176.

    Article  Google Scholar 

  • Oka, M., & Okada, K. (2023). Scalable Bayesian approach for the DINA Q-matrix estimation combining stochastic optimization and variational inference. Psychometrika, 88(1), 302–331.

    Article  MathSciNet  PubMed  Google Scholar 

  • Opper, M., & Archambeau, C. (2009). The variational Gaussian approximation revisited. Neural Computation, 21(3), 786–792.

    Article  MathSciNet  PubMed  Google Scholar 

  • Ormerod, J. T., & Wand, M. P. (2010). Explaining variational approximations. The American Statistician, 64(2), 140–153.

    Article  MathSciNet  Google Scholar 

  • Ormerod, J. T., & Wand, M. P. (2012). Gaussian variational approximate inference for generalized linear mixed models. Journal of Computational and Graphical Statistics, 21(1), 2–17.

    Article  MathSciNet  Google Scholar 

  • Reckase, M. D. (2009). Multidimensional item response theory models, in Multidimensional item response theory. Springer.

  • Rijmen, F., & Jeon, M. (2013). Fitting an item response theory model with random item effects across groups by a variational approximation method. Annals of Operations Research, 206(1), 647–662.

    Article  MathSciNet  Google Scholar 

  • Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70(3), 533–555.

    MathSciNet  Google Scholar 

  • Tian, W., Cai, L., Thissen, D., & Xin, T. (2013). Numerical differentiation methods for computing error covariance matrices in item response theory modeling: An evaluation and a new proposal. Educational and Psychological Measurement, 73(3), 412–439.

    Article  Google Scholar 

  • Tisais, M. (2016). One-vs-each approximation to softmax for scalable estimation of probabilities. Neural Information Processing Systems, 29, 4161–4169.

    Google Scholar 

  • Titterington, D. (2004). Bayesian methods for neural networks and related models. Statistical Science, 19(1), 128–139.

    Article  MathSciNet  Google Scholar 

  • von Davier, M., & Sinharay, S. (2010). Stochastic approximation methods for latent regression item response models. Journal of Educational and Behavioral Statistics, 35(2), 174–193.

    Article  Google Scholar 

  • Wang, C. (2015). On latent trait estimation in multidimensional compensatory item response models. Psychometrika, 80(2), 428–449.

    Article  MathSciNet  PubMed  Google Scholar 

  • Wiggins, J. S., & Trapnell, P. D. (1997). Personality structure: The return of the Big Five. In Handbook of personality psychology, pp. 737–765. Academic Press.

  • Wolfinger, R., & O’connell, M. (1993). Generalized linear mixed models a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48(3–4), 233–243.

    Article  Google Scholar 

  • Yamaguchi, K., & Okada, K. (2020). Variational Bayes inference algorithm for the saturated diagnostic classification model. Psychometrika, 85(4), 973–995.

    Article  MathSciNet  PubMed  Google Scholar 

  • Yao, L., & Schwarz, R. D. (2006). A multidimensional partial credit model with associated item and test statistics: An application to mixed-format tests. Applied Psychological Measurement, 30(6), 469–492.

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Chen, Y., & Liu, Y. (2020). An improved stochastic EM algorithm for large-scale full-information item factor analysis. British Journal of Mathematical and Statistical Psychology, 73(1), 44–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by IES grant R305D200015 and NSF grants SES-1846747 and SES-2150601.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Wang or Gongjun Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 590 KB)

Supplementary file 2 (zip 5 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Wang, C. & Xu, G. Variational Estimation for Multidimensional Generalized Partial Credit Model. Psychometrika (2024). https://doi.org/10.1007/s11336-024-09955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11336-024-09955-8

Keywords

Navigation