Skip to main content
Log in

A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The use of multilevel VAR(1) models to unravel within-individual process dynamics is gaining momentum in psychological research. These models accommodate the structure of intensive longitudinal datasets in which repeated measurements are nested within individuals. They estimate within-individual auto- and cross-regressive relationships while incorporating and using information about the distributions of these effects across individuals. An important quality feature of the obtained estimates pertains to how well they generalize to unseen data. Bulteel and colleagues (Psychol Methods 23(4):740–756, 2018a) showed that this feature can be assessed through a cross-validation approach, yielding a predictive accuracy measure. In this article, we follow up on their results, by performing three simulation studies that allow to systematically study five factors that likely affect the predictive accuracy of multilevel VAR(1) models: (i) the number of measurement occasions per person, (ii) the number of persons, (iii) the number of variables, (iv) the contemporaneous collinearity between the variables, and (v) the distributional shape of the individual differences in the VAR(1) parameters (i.e., normal versus multimodal distributions). Simulation results show that pooling information across individuals and using multilevel techniques prevent overfitting. Also, we show that when variables are expected to show strong contemporaneous correlations, performing multilevel VAR(1) in a reduced variable space can be useful. Furthermore, results reveal that multilevel VAR(1) models with random effects have a better predictive performance than person-specific VAR(1) models when the sample includes groups of individuals that share similar dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Next to the mean squared prediction error (MSPE), we also used the out-of-sample coefficient of determination \(\text {R}^2\) (Campbell and Thompson, 2008) to assess the predictive accuracy of the considered models. For a variable j, the out-of-sample \(\text {R}_j^2\) represents the proportion of variance of \(Y_j\) that is explained by the predictive model, estimated using other data. In our cross-validation context, the out-of-sample \(\text {R}_j^2\) can be computed as follows:

    $$\begin{aligned} \text {R}_j^2 = 1 - \frac{\sum _{k=1}^K \sum _{i=1}^N \sum _{t =1}^{T_{i}^{(k)}} (Y_{i t j k} - {\hat{Y}}_{i t j k})^2}{\sum _{k=1}^K \sum _{i=1}^N \sum _{t =1}^{T_{i}^{(k)}} (Y_{i t j k} - {\bar{Y}}_{i t j k})^2} \end{aligned}$$
    (4)

    where \({\hat{Y}}_{i t j k}\) indicates the predicted values based on the training data, and \({\bar{Y}}_{i t j k}\) is the mean of variable j. The overall \(\text {R}^2\) is computed as the average of the P \(\text {R}_j^2\)-values. The out-of-sample \(R^2\) takes values in the interval \([-\infty ,1]\). Negative values reflect that the predictive model has a poor predictive performance, whereas a value equal to one shows that the model perfectly predicts unseen data. Obviously, in most cases, we expect \(R^2\) to be smaller than the in-sample counterpart. Since this measure shows the same patterns as the MSPE, we did not include the results in the paper, but interested readers can consult them in the supplementary material: https://osf.io/rs6un/.

  2. In a previous version of the manuscript, we conducted the analysis varying the regressive parameters within each design cell. The simulation results are included in the OSF page of the project and are comparable with the ones presented in this paper.

  3. For each of the data generating models, we conducted a mixed ANOVA to investigate how the MSPE values of the six proposed methods are affected by the number of variables, the number of measurement occasions within persons, and the number of persons. Results show that there are large main effects of the number of variables and the estimation model. These main effects are qualified by interactions between the number of variables and the estimation model, and the number of variables and the number of measurement occasions. The results are included in the supplementary material.

References

  • Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388.

    Article  Google Scholar 

  • Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421.

    PubMed  Google Scholar 

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.

    Article  Google Scholar 

  • Bates, D., Kelman, T., Simon, A. B., Noack, A., Hatherly, M., & Bouchet-Valat, M. (2016). Dmbates/Mixedmodels.Jl: Drop Julia V0.4.X and earlier support. Zenodo.

  • Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015a). Parsimonious mixed models. arXiv preprint arXiv:1506.04967.

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015b). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

  • Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 68–98.

    Article  Google Scholar 

  • Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

    Article  PubMed  Google Scholar 

  • Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., & Kuppens, P. (2016). Assessing temporal emotion dynamics using networks. Assessment, 23(4), 425–435.

    Article  PubMed  Google Scholar 

  • Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brose, A., Voelkle, M. C., Lövdén, M., Lindenberger, U., & Schmiedek, F. (2015). Differences in the between-person and within-person structures of affect are a matter of degree. European Journal of Personality, 29(1), 55–71.

    Article  Google Scholar 

  • Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 415–452). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bulteel, K., Mestdagh, M., Tuerlinckx, F., & Ceulemans, E. (2018a). VAR (1) based models do not always outpredict AR (1) models in typical psychological applications. Psychological Methods, 23(4), 740–756.

    Article  PubMed  Google Scholar 

  • Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2016a). Clustering vector autoregressive models: Capturing qualitative differences in within-person dynamics. Frontiers in Psychology, 7, 1540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2016b). Using raw VAR regression coefficients to build networks can be misleading. Multivariate Behavioral Research, 51(2–3), 330–344.

    Article  PubMed  Google Scholar 

  • Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2018b). Improved insight into and prediction of network dynamics by combining VAR and dimension reduction. Multivariate Behavioral Research, 53(6), 853–875.

    Article  PubMed  Google Scholar 

  • Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies, 21(4), 1509–1531.

    Article  Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.

    Article  PubMed  Google Scholar 

  • Ceulemans, E., & Kiers, H. A. (2009). Discriminating between strong and weak structures in three-mode principal component analysis. British Journal of Mathematical and Statistical Psychology, 62(3), 601–620.

    Article  PubMed  Google Scholar 

  • Ceulemans, E., & Kiers, H. A. L. (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59(1), 133–150.

    Article  PubMed  Google Scholar 

  • Ceulemans, E., Timmerman, M. E., & Kiers, H. A. (2011). The CHull procedure for selecting among multilevel component solutions. Chemometrics and Intelligent Laboratory Systems, 106(1), 12–20.

    Article  Google Scholar 

  • Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection. Psychometrika, 70(3), 461–480.

    Article  Google Scholar 

  • Ceulemans, E., Wilderjans, T. F., Kiers, H. A. L., & Timmerman, M. E. (2016). MultiLevel simultaneous component analysis: A computational shortcut and software package. Behavior Research Methods, 48, 1008–1020.

    Article  PubMed  Google Scholar 

  • Clark, T. S., & Linzer, D. A. (2015). Should I use fixed or random effects. Political Science Research and Methods, 3(2), 399–408.

    Article  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. Milton Park: Routledge.

    Book  Google Scholar 

  • Crawford, A. V., Green, S. B., Levy, R., Lo, W. J., Scott, L., Svetina, D., & Thompson, M. S. (2010). Evaluation of parallel analysis methods for determining the number of factors. Educational and Psychological Measurement, 70(6), 885–901.

    Article  Google Scholar 

  • Eisele, G., Lafit, G., Vachon, H., Kuppens, P., Houben, M., Myin-Germeys, I., & Viechtbauer, W. (2020). Affective structure, measurement invariance, and reliability across different experience sampling protocols.

  • Ernst, A. F., Timmerman, M. E., Jeronimus, B. F., & Albers, C. J. (2019). Insight into individual differences in emotion dynamics with clustering. Assessment, first online.

  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer series in statistics (Vol. 1(10)). New York: Springer.

    Google Scholar 

  • Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1), 55–77.

    Article  Google Scholar 

  • Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310–319.

    Article  PubMed  Google Scholar 

  • Gelman, A. (2005). Analysis of variance-why it is more important than ever. Annals of Statistics, 33(1), 1–53.

    Article  Google Scholar 

  • Goldstein, H. (2011). Multilevel statistical models (Vol. 922). Hoboken: Wiley.

    Google Scholar 

  • Hamaker, E., Ceulemans, E., Grasman, R., & Tuerlinckx, F. (2015). Modeling affect dynamics: State of the art and future challenges. Emotion Review, 7(4), 316–322.

    Article  Google Scholar 

  • Hamilton, J. (1994). Time series analysis (Vol. 2). Princeton: Princeton University Press.

    Book  Google Scholar 

  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.

    Article  PubMed  Google Scholar 

  • Hox, J. J. (2010). Multilevel analysis: Techniques and applications. New York, NY: Routledge.

    Book  Google Scholar 

  • Jongerling, J., Laurenceau, J. P., & Hamaker, E. L. (2015). A multilevel AR (1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50(3), 334–349.

    Article  PubMed  Google Scholar 

  • Kiers, H. A., & Smilde, A. K. (2007). A comparison of various methods for multivariate regression with highly collinear variables. Statistical Methods and Applications, 16(2), 193–228.

    Article  Google Scholar 

  • Kiers, H. A. L., & ten Berge, J. M. F. (1994a). Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure. British Journal of Mathematical and Statistical Psychology, 47, 109–126.

    Article  Google Scholar 

  • Kiers, H. A. L., & ten Berge, J. M. F. (1994b). The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights. Psychometrika, 59, 81–90.

    Article  Google Scholar 

  • Krone, T., Albers, C. J., Kuppens, P., & Timmerman, M. E. (2018). A multivariate statistical model for emotion dynamics. Emotion, 18(5), 739–754.

    Article  PubMed  Google Scholar 

  • Krone, T., Albers, C. J., & Timmerman, M. E. (2016). Comparison of estimation procedures for multilevel AR (1) models. Frontiers in Psychology, 7, 486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krone, T., Albers, C. J., & Timmerman, M. E. (2017). A comparative simulation study of AR(1) estimators in short time series. Quality & Quantity, 51(1), 1–21.

    Article  Google Scholar 

  • Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21(7), 984–991.

    Article  PubMed  Google Scholar 

  • Kuppens, P., Champagne, D., & Tuerlinckx, F. (2012). The dynamic interplay between appraisal and core affect in daily life. Frontiers in Psychology, 3, 380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafit, G., Adolf, J., Dejonckheere, E., Myin-Germeys, I., Viechtbauer, W., & Ceulemans, E. (2021). Selection of the number of participants in intensive longitudinal studies: A user-friendly shiny app and tutorial for performing power analysis in multilevel regression models that account for temporal dependencies. In Advances in methods and practices in psychological science.

  • Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling method. In H. T. Reis (Ed.), New directions for methodology of social and behavioral science (pp. 41–56). San Francisco: Jossey-Bass.

    Google Scholar 

  • Liu, S. (2017). Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels. British Journal of Mathematical and Statistical Psychology, 70(3), 480–498.

    Article  PubMed  Google Scholar 

  • Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340–364.

    Article  PubMed  Google Scholar 

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

    Book  Google Scholar 

  • Mansueto, A. C., Wiers, R., van Weert, J. C., Schouten, B. C., & Epskamp, S. (2020). Investigating the feasibility of idiographic network models.

  • McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610.

    Article  PubMed  Google Scholar 

  • Merz, E. L., & Roesch, S. C. (2011). Modeling trait and state variation using multilevel factor analysis with PANAS daily diary data. Journal of Research in Personality, 45(1), 2–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Molenaar, P. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201–218.

    Google Scholar 

  • Morren, M., Van Dulmen, S., Ouwerkerk, J., & Bensing, J. (2009). Compliance with momentary pain measurement using electronic diaries: a systematic review. European Journal of Pain, 13(4), 354–365.

    Article  PubMed  Google Scholar 

  • Müller, S., Scealy, J. L., & Welsh, A. H. (2013). Model selection in linear mixed models. Statistical Science, 28(2), 135–167.

    Article  Google Scholar 

  • Muthén, B., & Muthén, B. O. (2009). Statistical analysis with latent variables. New York, NY: Wiley.

    Google Scholar 

  • Myin-Germeys, I., Kasanova, Z., Vaessen, T., Vachon, H., Kirtley, O., Viechtbauer, W., & Reininghaus, U. (2018). Experience sampling methodology in mental health research: New insights and technical developments. World Psychiatry, 17(2), 123–132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ono, M., Schneider, S., Junghaenel, D. U., & Stone, A. A. (2019). What affects the completion of ecological momentary assessments in chronic pain research? An individual patient data meta-analysis. Journal of Medical Internet Research, 21(2), e11398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F., Tuerlinckx, F., Mestdagh, M., & Kuppens, P. (2015). Emotion-network density in major depressive disorder. Clinical Psychological Science, 3(2), 292–300.

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Schepers, J., Ceulemans, E., & Van Mechelen, I. (2008). Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria. Journal of Classification, 25(1), 67.

  • Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495–515.

    Article  Google Scholar 

  • Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel autoregressive modeling. Psychological Methods, 24(1), 70.

    Article  PubMed  Google Scholar 

  • Sels, L., Ceulemans, E., Bulteel, K., & Kuppens, P. (2016). Emotional interdependence and well-being in close relationships. Frontiers in Psychology, 7, 283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67–77.

    Article  PubMed  Google Scholar 

  • Timmerman, M. E., & Kiers, H. A. L. (2003). Four simultaneous component models of multivariate time series for more than one subject to model intraindividual and interindividual differences. Psychometrika, 86, 105–122.

    Article  Google Scholar 

  • Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9, 151–176.

    Article  PubMed  Google Scholar 

  • Vachon, H., Viechtbauer, W., Rintala, A., & Myin-Germeys, I. (2019). Compliance and retention with the experience sampling method over the continuum of severe mental disorders: Meta-analysis and recommendations. Journal of Medical Internet Research, 21(12), e14475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wainer, H. (1976). Estimating coefficients in linear models: It dont make no nevermind. Psychological Bulletin, 83(2), 213.

    Article  Google Scholar 

  • Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063.

    Article  PubMed  Google Scholar 

  • Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine, 44(7), 1349–1360.

    Article  PubMed  Google Scholar 

  • Wigman, J. T. W., Van Os, J., Borsboom, D., Wardenaar, K. J., Epskamp, S., Klippel, A., & Wichers, M. (2015). Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychological Medicine, 45(11), 2375–2387.

    Article  PubMed  Google Scholar 

  • Wilderjans, T. F., Ceulemans, E., & Meers, K. (2013). CHull: A generic convex hull based model selection method. Behavior Research Methods, 45(1), 1–15.

    Article  PubMed  Google Scholar 

  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zautra, A. J., Affleck, G. G., Tennen, H., Reich, J. W., & Davis, M. C. (2005). Dynamic approaches to emotions and stress in everyday life: Bolger and Zuckerman reloaded with positive as well as negative affects. Journal of Personality, 73(6), 1511–1538.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

Funding

The research presented in this article was supported by research grants from the Fund for Scientific Research-Flanders (FWO; Project No. G0C9821N) and from the Research Council of KU Leuven (C14/19/054; iBOF/21/090) awarded to E. Ceulemans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginette Lafit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Performance Measures to Evaluate Estimation Accuracy. While we cannot directly estimate the mean squared bias or variance of the predictions in our CV setting, an easy way to shed some light on the relation between predictive accuracy and estimation accuracy is to investigate how well person-specific and multilevel VAR(1) models can accurately estimate the elements of the true transition matrix \(\varvec{\Psi }_i\), underlying our simulated data. Specifically, using the complete data sets (i.e., without further splitting them in a training and test part), we can compute the mean squared estimation error for the autoregressive effects as follows:

$$\begin{aligned} \text {MSE}_{\psi _{jj}} = \frac{1}{N} \sum _{i=1}^N \left( \frac{1}{P} \sum _{j=1}^{P} \big ({\hat{\psi }}_{i j j} - \psi _{i j j}\big )^2 \right) \end{aligned}$$
(12)

where \(\psi _{i j j}\) and \({\hat{\psi }}_{i j j}\) denote the true and estimated autoregressive effects. Additionally, we can compute the mean squared estimation errors for the cross-regressive effects:

$$\begin{aligned} \text {MSE}_{\psi _{jk}} = \frac{1}{N} \sum _{i=1}^N \left( \frac{1}{P(P-1)} \sum _{j=1}^{P} \sum _{\begin{array}{c} k=1 \\ k\ne j \end{array}}^{P} \big ({\hat{\psi }}_{i j k} - \psi _{i j k}\big )^2 \right) \end{aligned}$$
(13)

where \(\psi _{i j k}\) and \({\hat{\psi }}_{i j k}\) denote the true and estimated cross-regressive effects. We expect that these two MSE measures are strongly correlated to how well a considered modeling approach estimates the target function \(f(\mathbf{Y }_{it-1})\). We will do that for Study I and report the results below (Tables 9 and 10). Figures 5, 6, 7, 8, 9, 10, 11, and 12 display the histograms of the distribution of the auto- and cross-regressive effects across persons when data are generated from a multilevel VAR(1) model with random effects, a person-specific VAR(1) model, or a cluster-specific VAR(1) model.

Table 9 Simulation results of study I. The mean squared estimation error (standard deviation in parentheses) for the autoregressive effects when data are generated using person-specific and multilevel VAR(1) models.
Table 10 Simulation results of study I. The mean squared estimation error (standard deviation in parentheses) for the cross-regressive effects when data are generated using person-specific and multilevel VAR(1) models.
Fig. 5
figure 5

Distribution of the elements of the transition matrix for a multilevel VAR(1) model with random effects with 4 variables and 60 individuals. The vertical lines represent the fixed effects.

Fig. 6
figure 6

Distribution of the elements of the transition matrix for a person-specific VAR(1) model with 4 variables and 60 individuals.

Fig. 7
figure 7

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 2 clusters of equal size, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Fig. 8
figure 8

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 2 clusters with one cluster including 10% of the persons, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Fig. 9
figure 9

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 2 clusters with one cluster including 60% of the persons, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Fig. 10
figure 10

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 4 clusters of equal size, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Fig. 11
figure 11

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 4 clusters with one cluster including 10% of the persons, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Fig. 12
figure 12

Distribution of the elements of the transition matrix for a cluster-specific VAR(1) model with random effects with 4 variables, 4 clusters with one cluster including 60% of the persons, and 60 individuals. The vertical lines represent the fixed effects for each cluster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafit, G., Meers, K. & Ceulemans, E. A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models. Psychometrika 87, 432–476 (2022). https://doi.org/10.1007/s11336-021-09803-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09803-z

Keywords

Navigation