Skip to main content

Estimating Finite Mixtures of Ordinal Graphical Models

Abstract

Graphical models have received an increasing amount of attention in network psychometrics as a promising probabilistic approach to study the conditional relations among variables using graph theory. Despite recent advances, existing methods on graphical models usually assume a homogeneous population and focus on binary or continuous variables. However, ordinal variables are very popular in many areas of psychological science, and the population often consists of several different groups based on the heterogeneity in ordinal data. Driven by these needs, we introduce the finite mixture of ordinal graphical models to effectively study the heterogeneous conditional dependence relationships of ordinal data. We develop a penalized likelihood approach for model estimation, and design a generalized expectation-maximization (EM) algorithm to solve the significant computational challenges. We examine the performance of the proposed method and algorithm in simulation studies. Moreover, we demonstrate the potential usefulness of the proposed method in psychological science through a real application concerning the interests and attitudes related to fan avidity for students in a large public university in the United States.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.

    Article  Google Scholar 

  • Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37(6A), 3099–3132.

    Article  Google Scholar 

  • Amemiya, T. (1974). Bivariate probit analysis: Minimum chi-square methods. Journal of the American Statistical Association, 69(348), 940–944.

    Article  Google Scholar 

  • Balakrishnan, S., Wainwright, M. J., & Yu, B. (2017). Statistical guarantees for the EM algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1), 77–120.

    Article  Google Scholar 

  • Bock, R. D., & Gibbons, R. D. (1996). High-dimensional multivariate probit analysis. Biometrics, 52(4), 1183–1194.

    PubMed  Article  Google Scholar 

  • Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089–1108.

    PubMed  Article  Google Scholar 

  • Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

    PubMed  Article  Google Scholar 

  • Borsboom, D., & Molenaar, D. (2015). Psychometrics. International Encyclopedia of the Social & Behavioral Sciences, 19(2), 418–422.

    Article  Google Scholar 

  • Breen, R., & Luijkx, R. (2010). Mixture models for ordinal data. Sociological Methods & Research, 39(1), 3–24.

    Article  Google Scholar 

  • Brusco, M. J., Steinley, D., Hoffman, M., Davis-Stober, C., & Wasserman, S. (2019). On Ising models and algorithms for the construction of symptom networks in psychopathological research. Psychological Methods, 24(6), 735–753.

    PubMed  Article  Google Scholar 

  • Cai, T., Liu, W., & Luo, X. (2011). A constrained \(\ell _1\) minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494), 594–607.

    Article  Google Scholar 

  • Chen, S., Witten, D. M., & Shojaie, A. (2015). Selection and estimation for mixed graphical models. Biometrika, 102(1), 47–64.

    PubMed  Article  Google Scholar 

  • Cheng, J., Li, T., Levina, E., & Zhu, J. (2017). High-dimensional mixed graphical models. Journal of Computational and Graphical Statistics, 26(2), 367–378.

    Article  Google Scholar 

  • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85(2), 347–361.

    Article  Google Scholar 

  • Cox, D. R., & Wermuth, N. (1994). A note on the quadratic exponential binary distribution. Biometrika, 81(2), 403–408.

    Article  Google Scholar 

  • Cramer, A. O., Waldorp, L. J., Van Der Maas, H. L., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2–3), 137–150.

    Article  PubMed  Google Scholar 

  • Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. (2016). Toward a formalized account of attitudes: The causal attitude network (can) model. Psychological Review, 123(1), 2.

    PubMed  Article  Google Scholar 

  • Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B, 76(2), 373–397.

    Article  Google Scholar 

  • Dayton, C. M., & Macready, G. B. (1988). Concomitant-variable latent-class models. Journal of the American Statistical Association, 83(401), 173–178.

    Article  Google Scholar 

  • Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157–75.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–22.

    Google Scholar 

  • DeSarbo, W. S. (2010). A spatial multidimensional unfolding choice model for examining the heterogeneous expressions of sports fan avidity. Journal of Quantitative Analysis in Sports, 6(2), 1–24.

    Article  Google Scholar 

  • DeSarbo, W. S., Chen, Q., & Blank, A. S. (2017). A parametric constrained segmentation methodology for application in sport marketing. Customer Needs and Solutions, 4(4), 37–55.

    Article  Google Scholar 

  • Dwivedi, R., Ho, N., Khamaru, K., Wainwright, M. J. & Jordan, M. I. (2018), Theoretical guarantees for the EM algorithm when applied to mis-specified gaussian mixture models. In Proceedings of the 32nd international conference on neural information processing systems (pp. 9704–9712).

  • Epskamp, S., Maris, G., Waldorp, L. J. & Borsboom, D. (2018). Network psychometrics. The Wiley handbook of psychometric testing: A multi-disciplinary reference on survey, scale and test development (pp. 953–986).

  • Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904–927.

    PubMed  Article  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456), 1348–1360.

    Article  Google Scholar 

  • Fan, J., Liu, H., Ning, Y., & Zou, H. (2017). High dimensional semiparametric latent graphical model for mixed data. Journal of the Royal Statistical Society: Series B, 79(2), 405–421.

    Article  Google Scholar 

  • Fan, J., Xue, L., & Zou, H. (2014). Strong oracle optimality of folded concave penalized estimation. The Annals of Statistics, 42(3), 819.

    PubMed  Google Scholar 

  • Feng, H., & Ning, Y. (2019). High-dimensional mixed graphical model with ordinal data: Parameter estimation and statistical inference. In The 22nd international conference on artificial intelligence and statistics (pp. 654–663).

  • Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O., et al. (2015). From loss to loneliness: The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256.

    PubMed  Article  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.

    PubMed  Article  Google Scholar 

  • Greene, W. H., & Hensher, D. A. (2003). A latent class model for discrete choice analysis: Contrasts with mixed logit. Transportation Research Part B: Statistical Methodology, 37(8), 681–698.

    Article  Google Scholar 

  • Grün, B., & Leisch, F. (2008). Finite mixtures of generalized linear regression models. In Recent advances in linear models and related areas (pp. 205–230). Springer.

  • Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2011). Joint estimation of multiple graphical models. Biometrika, 98(1), 1–15.

    PubMed  PubMed Central  Article  Google Scholar 

  • Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2015). Graphical models for ordinal data. Journal of Computational and Graphical Statistics, 24(1), 183–204.

    PubMed  Article  Google Scholar 

  • Haslbeck, J. M., & Waldorp, L. J. (2016). mgm: Structure estimation for time-varying mixed graphical models in high-dimensional data 30, 39–81. arXiv:1510.06871

  • Höfling, H., & Tibshirani, R. (2009). Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. Journal of Machine Learning Research, 10, 883–906.

    PubMed  Google Scholar 

  • Huang, T., Peng, H., & Kun, Z. (2017). Model selection for Gaussian mixture models. Statistica Sinica, 27(1), 147–169.

    Google Scholar 

  • Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1), 253–258.

    Article  Google Scholar 

  • Isvoranu, A.-M., van Borkulo, C. D., Boyette, L.-L., Wigman, J. T., Vinkers, C. H., Borsboom, D., et al. (2016). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 43(1), 187–196.

    PubMed  PubMed Central  Article  Google Scholar 

  • Lafit, G., Tuerlinckx, F., Myin-Germeys, I., & Ceulemans, E. (2019). A partial correlation screening approach for controlling the false positive rate in sparse Gaussian graphical models. Scientific Reports, 9(1), 1–24.

    Article  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models. Oxford: Clarendon Press.

    Google Scholar 

  • Lee, J. D., & Hastie, T. J. (2015). Learning the structure of mixed graphical models. Journal of Computational and Graphical Statistics, 24(1), 230–253.

    PubMed  Article  Google Scholar 

  • Lee, K. H., & Xue, L. (2018). Nonparametric finite mixture of Gaussian graphical models. Technometrics, 60(4), 511–521.

    Article  Google Scholar 

  • Liu, H., Lafferty, J., & Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10, 2295–2328.

    Google Scholar 

  • Lwin, T., & Martin, P. (1989). Probits of mixtures. Biometrics, 45(3), 721–732.

    PubMed  Article  Google Scholar 

  • Ma, S., Xue, L., & Zou, H. (2021). Alternating direction methods for latent variable Gaussian graphical model selection. Neural Computation, 25(8), 2172–2198.

    Article  Google Scholar 

  • Marsman, M. (2019). The idiographic ising model. PsyArXiv Preprints https://psyarxiv.com/h3ka5.

  • Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., et al. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35.

    PubMed  Article  Google Scholar 

  • Marsman, M., Waldorp, L., & Borsboom, D. (2019). Towards an encompassing theory of network models. PsyArXiv Preprints https://psyarxiv.com/n98qt.

  • Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436–1462.

    Article  Google Scholar 

  • Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B, 72(4), 417–473.

    Article  Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.

    Article  Google Scholar 

  • Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional Ising model selection using \(\ell _1\)-regularized logistic regression. The Annals of Statistics, 38(3), 1287–1319.

    Article  Google Scholar 

  • Ruan, L., Yuan, M., & Zou, H. (2011). Regularized parameter estimation in high-dimensional Gaussian mixture models. Neural Computation, 23(6), 1605–1622.

    PubMed  PubMed Central  Article  Google Scholar 

  • Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53.

    Article  Google Scholar 

  • Städler, N., Bühlmann, P., & Van De Geer, S. (2010). \(\ell _1\)-penalization for mixture regression models. Test, 19(2), 209–256.

    Article  Google Scholar 

  • Suggala, A. S., Yang, E., & Ravikumar, P. (2017). Ordinal graphical models: A tale of two approaches. In International conference on machine learning (pp. 3260–3269).

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58(1), 267–288.

    Google Scholar 

  • von Davier, M., & Carstensen, C. H. (2007). Multivariate and mixture distribution Rasch models: Extensions and applications. Berlin: Springer.

    Book  Google Scholar 

  • Wedel, M. (2002). Concomitant variables in finite mixture models. Statistica Neerlandica, 56(3), 362–375.

    Article  Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12(1), 21–55.

    Article  Google Scholar 

  • Xue, L., & Zou, H. (2012). Regularized rank-based estimation of high-dimensional nonparanormal graphical models. The Annals of Statistics, 40(5), 2541–2571.

    Article  Google Scholar 

  • Xue, L., Zou, H., & Cai, T. (2012). Nonconcave penalized composite conditional likelihood estimation of sparse Ising models. The Annals of Statistics, 40(3), 1403–1429.

    Article  Google Scholar 

  • Yao, W. (2015). Label switching and its solutions for frequentist mixture models. Journal of Statistical Computation and Simulation, 85(5), 1000–1012.

    Article  Google Scholar 

  • Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1), 19–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhou Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors wish to recognize and thank the Co-Editors, the Associate Editor, and three anonymous referees for their insightful and constructive comments.

The work of Lingzhou Xue was supported in part by the National Science Foundation (NSF) Grants DMS-1811552, DMS-1953189, and CCF-2007823.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 297 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, K.H., Chen, Q., DeSarbo, W.S. et al. Estimating Finite Mixtures of Ordinal Graphical Models. Psychometrika 87, 83–106 (2022). https://doi.org/10.1007/s11336-021-09781-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09781-2

Keywords

  • Gaussian mixture model
  • Gaussian graphical model
  • ordinal data
  • latent variables
  • network psychometrics
  • EM algorithm