Parceling Cannot Reduce Factor Indeterminacy in Factor Analysis: A Research Note

Abstract

Parceling—using composites of observed variables as indicators for a common factor—strengthens loadings, but reduces the number of indicators. Factor indeterminacy is reduced when there are many observed variables per factor, and when loadings and factor correlations are strong. It is proven that parceling cannot reduce factor indeterminacy. In special cases where the ratio of loading to residual variance is the same for all items included in each parcel, factor indeterminacy is unaffected by parceling. Otherwise, parceling worsens factor indeterminacy. While factor indeterminacy does not affect the parameter estimates, standard errors, or fit indices associated with a factor model, it does create uncertainty, which endangers valid inference.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    An anonymous reviewer suggested this substantially generalized proof, the analogy to regression, and the application of that analogy to identifying circumstances where parceling does not worsen factor indeterminacy. We very much thank the reviewer for these remarkable insights.

References

  1. Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9(1), 78–102. https://doi.org/10.1207/S15328007SEM0901_5.

    Article  Google Scholar 

  2. Bandalos, D. L. (2008). Is parceling really necessary? A comparison of results from item parceling and categorical variable methodology. Structural Equation Modeling, 15(2), 211–240. https://doi.org/10.1080/10705510801922340.

    Article  Google Scholar 

  3. Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 269–296). Mahwah: LEA.

    Google Scholar 

  4. Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge: Cambridge University.

    Google Scholar 

  5. Gentle, J. E. (2017). Matrix algebra (2nd ed.). Cham: Springer.

    Google Scholar 

  6. Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common-factor theory. British Journal of Statistical Psychology, 8(2), 65–81. https://doi.org/10.1111/j.2044-8317.1955.tb00321.x.

    Article  Google Scholar 

  7. Haig, B. D., & Evers, C. W. (2016). Realist inquiry in social science. London: Sage.

    Google Scholar 

  8. Hall, R. J., Snell, A. F., & Foust, M. S. (1999). Item parceling strategies in SEM: Investigating the subtle effects of unmodeled secondary constructs. Organizational Research Methods, 2(3), 233–256. https://doi.org/10.1177/109442819923002.

    Article  Google Scholar 

  9. Hoyle, R. H. (Ed.). (2014). Handbook of structural equation modeling. New York: Guilford Press.

    Google Scholar 

  10. Landis, R. S., Beal, D. J., & Tesluk, P. E. (2000). A comparison of approaches to forming composite measures in structural equation models. Organizational Research Methods, 3(2), 186–207. https://doi.org/10.1177/109442810032003.

    Article  Google Scholar 

  11. Lastovicka, J. L., & Thamodaran, K. (1991). Common factor score estimates in multiple regression problems. Journal of Marketing Research, 28(1), 105–112. https://doi.org/10.1177/002224379102800109.

    Article  Google Scholar 

  12. Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151–173. https://doi.org/10.1207/S15328007SEM0902_1.

    Article  Google Scholar 

  13. Maraun, M. D. (1996). Metaphor taken as math: Indeterminacy in the factor analysis model. Multivariate Behavioral Research, 31(4), 517–538. https://doi.org/10.1207/s15327906mbr3104_6.

    Article  PubMed  Google Scholar 

  14. Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J., & Von Davier, M. (2013). Why item parcels are (almost) never appropriate: Two wrongs do not make a right—Camouflaging misspecification with item parcels in CFA models. Psychological Methods, 18(3), 257–284. https://doi.org/10.1037/a0032773.

    Article  PubMed  Google Scholar 

  15. Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33(2), 181–220. https://doi.org/10.1207/s15327906mbr3302_1.

    Article  Google Scholar 

  16. Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton: Chapman & Hall.

    Google Scholar 

  17. Plummer, B. (2000). To parcel or not to parcel: The effects of item parceling in confirmatory factor analysis. Providence: Dissertation, The University of Rhode Island.

  18. Psillos, S. (1999). Scientific realism: How science tracks truth. Abingdon: Routledge.

    Google Scholar 

  19. Revelle, W. (2018). psych: Procedures for personality and psychological research. Evanston: Northwestern University. https://CRAN.R-project.org/package=psych Version = 1.8.12. Accessed 27 Jan 2019.

  20. Rhemtulla, M. (2016). Population performance of SEM parceling strategies under measurement and structural model misspecification. Psychological Methods, 21(3), 348–368. https://doi.org/10.1037/met0000072.

    Article  PubMed  Google Scholar 

  21. Rigdon, E. E., Becker, J. M., & Sarstedt, M. (2019). Factor indeterminacy as metrological uncertainty: Implications for advancing psychological measurement. Multivariate Behavioral Research, 54(3), 429–443. https://doi.org/10.1080/00273171.2018.1535420.

    Article  PubMed  Google Scholar 

  22. Sass, D. A., & Smith, D. L. (2006). The effects of parceling unidimensional scales on structural parameter estimates in structural equation modeling. Structural Equation Modeling, 13(4), 566–586. https://doi.org/10.1207/s15328007sem1304_4.

    Article  Google Scholar 

  23. Schönemann, P. H., & Haagen, K. (1987). On the use of factor scores for prediction. Biometrical Journal, 29(7), 835–847. https://doi.org/10.1002/bimj.4710290712.

    Article  Google Scholar 

  24. Schönemann, P. H., & Steiger, J. H. (1978). On the validity of indeterminate factor scores. Bulletin of the Psychonomic Society, 12(4), 287–290. https://doi.org/10.3758/BF03329685.

    Article  Google Scholar 

  25. Schönemann, P. H., & Wang, M.-M. (1972). Some new results on factor indeterminacy. Psychometrika, 37(1), 61–91. https://doi.org/10.1007/BF02291413.

    Article  Google Scholar 

  26. Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66(4), 563–575. https://doi.org/10.1007/BF02296196.

    Article  Google Scholar 

  27. Steiger, J. H. (1979). The relationship between external variables and common factors. Psychometrika, 44(1), 93–97. https://doi.org/10.1007/BF02293788.

    Article  Google Scholar 

  28. Williams, L. J., & O’Boyle, E. H, Jr. (2008). Measurement models for linking latent variables and indicators: A review of human resource management research using parcels. Human Resource Management Review, 18, 233–242. https://doi.org/10.1016/j.hrmr.2008.07.002.

    Article  Google Scholar 

  29. Wilson, E. B. (1928). The abilities of man: Their nature and measurement. Science, 67(1731), 244–248.

    Article  Google Scholar 

  30. Yang, C., Nay, S., & Hoyle, R. H. (2010). Three approaches to using lengthy ordinal scales in structural equation models: Parceling, latent scoring, and shortening scales. Applied Psychological Measurement, 34(2), 122–142. https://doi.org/10.1177/0146621609338592.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward E. Rigdon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (R 4 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rigdon, E.E., Becker, J. & Sarstedt, M. Parceling Cannot Reduce Factor Indeterminacy in Factor Analysis: A Research Note. Psychometrika 84, 772–780 (2019). https://doi.org/10.1007/s11336-019-09677-2

Download citation

Keywords

  • factor analysis
  • parceling
  • factor indeterminacy
  • uncertainty