Skip to main content
Log in

Simplified Estimation and Testing in Unbalanced Repeated Measures Designs

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Although the effect of Task was not included in our hypotheses, the significant effect is not surprising: Responding to the location of a stimulus by hitting a spatially corresponding key is known to yield particularly fast responses (e.g., Fitts & Deininger, 1954; overview in Proctor & Vu, 2006), widely regarded as constituting a special kind of facilitated (“compatible” or “automatic”) processing.

References

  • Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bond, S., & Windmeijer, F. (2005). Reliable inference for GMM estimators? Finite sample properties of alternative test procedures in linear panel models. Econometric Reviews, 24(1), 1–37.

    Article  Google Scholar 

  • Bradley, R. C. (1981). Central limit theorems under weak dependence. Journal of Multivariate Analysis, 11, 1–16.

    Article  Google Scholar 

  • Cheng, G., Yu, Z., & Huang, J. Z. (2013). The cluster bootstrap consistency in generalized estimating equations. Journal of Multivariate Analysis, 115, 33–47.

    Article  Google Scholar 

  • Chung, K. L. (2001). A course in probability theory (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Book  Google Scholar 

  • Fitts, P. M., & Deininger, R. L. (1954). S-R compatibility: Correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48, 483–492.

    Article  PubMed  Google Scholar 

  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112.

    Article  Google Scholar 

  • Hall, P., & Horowitz, J. L. (1996). Bootstrap critical values for tests based on generalized-method-of-moments estimators. Econometrica, 64(4), 891–916.

    Article  Google Scholar 

  • Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1), 69–82.

    Article  Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., et al. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136, 849–874.

    Article  PubMed  Google Scholar 

  • Klass, M., & Teicher, H. (1987). The central limit theorem for exchangeable random variables without moments. The Annals of Probability, 15, 138–151.

    Article  Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.

    Article  Google Scholar 

  • MacKinnon, J. G. (2002). Bootstrap inference in econometrics. Canadian Journal of Economics, 35, 615–645.

    Article  Google Scholar 

  • Mauchly, J. W. (1940). Significance test for sphericity of a normal \(n\)-variate distribution. Annals of Mathematical Statistics, 11, 204–209.

    Article  Google Scholar 

  • McDonald, R. P. (1976). The McDonald–Swaminathan matrix calculus: Clarifications, extensions, and illustrations. General Systems, 21, 87–94.

    Google Scholar 

  • McDonald, R. P., & Swaminathan, H. (1973). A simple calculus with applications to multivariate analysis. General Systems, 18, 37–54.

    Google Scholar 

  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423–1442.

    Google Scholar 

  • Newey, W. H., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics (Vol. IV, pp. 2111–2245). Amsterdam: Elsevier.

    Google Scholar 

  • Newman, C. H. (1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. Inequalities in Statistics and Probability, IMS Lecture Notes-Monograph Series, 5, 127–140.

    Google Scholar 

  • Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus-response compatibility principles: Data, theory, and application. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  • Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90(429), 106–121.

    Article  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  • Rotnitzky, A., & Jewell, N. P. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 77(3), 485–497.

    Article  Google Scholar 

  • Schneider, D. (2015). Attentional control of response selection in task switching. Journal of Experimental Psychology: Human Perception and Performance, 41, 1315–1324.

    PubMed  Google Scholar 

  • Spiess, M. (2006). Estimation of a two-equation panel model with mixed continuous and ordered categorical outcomes and missing data. Applied Statistics, 55(4), 525–538.

    Google Scholar 

  • Spiess, M., & Hamerle, A. (1996). On the properties of GEE estimators in the presence of invariant covariates. Biometrical Journal, 38(8), 931–940.

    Article  Google Scholar 

  • Swaminathan, H. (1976). Matrix calculus for functions of partitioned matrices. General Systems, 21, 95–98.

    Google Scholar 

  • Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136, 601–626.

    Article  PubMed  Google Scholar 

  • Wilcox, R. R. (2017). Introduction to robust estimation and hypothesis testing (4th ed.). San Diego: Academic Press.

    Google Scholar 

  • Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. The Annals of Mathematical Statistics, 38, 1092–1109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Spiess.

Additional information

The authors thank Aquiles Luna-Rodriguez for programming the experimental software and Marvin Gensicke for collecting the data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 227 KB)

Supplementary material 2 (zip 109 KB)

Appendices

A Simplifications

Given \(\mathbf{X }_i = \mathbf{D }_i \mathbf{Z }\) and \(\mathbf{D }^T_i \widetilde{\mathbf{V }}^{-1/2}_i = \mathbf{V }^{-1/2} \mathbf{D }^T_i \), (5) simplifies to

$$\begin{aligned} \hat{\varvec{\theta }}^{(0)}= \left[ \mathbf{Z }^T \mathbf{V }^{-1/2} \left( \sum _i \mathbf{D }^T_i \mathbf{R }^{-1}_i \mathbf{D }_i\right) \mathbf{V }^{-1/2} \mathbf{Z } \right] ^{-1} \left[ \mathbf{Z }^T \mathbf{V }^{-1/2} \sum _i \mathbf{D }^T_i \mathbf{R }^{-1}_i \widetilde{\mathbf{V }}^{-1/2}_i \mathbf{y }_i \right] . \end{aligned}$$

The inverse of \(\mathbf{R }_i\) is given by the following

Theorem 1

Let \(0 \le \rho _1 \le \rho _2 < 1\) and \(T_{i,k}>0\), then the inverse of

$$\begin{aligned} \mathbf{R }_i = (1-\rho _2 ) \mathbf{I }_{T_i} + (\rho _2 - \rho _1) \mathbf{D }_i \mathbf{D }^ T_i + \rho _1 \mathbf{J }_{T_i} \end{aligned}$$

is

$$\begin{aligned} \mathbf{F }_i = \frac{1}{1-\rho _2} \mathbf{I }_{T_i} - \mathbf{D }_i \left[ \frac{\rho _2 - \rho _1}{1-\rho _2} \ \mathrm {diag}\left( \mathbf{a }_i\right) + \frac{\rho _1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{a }_i\mathbf{a }^T_i\right] \mathbf{D }^T_i , \end{aligned}$$

where \(\mathbf{I }_{T_i}\) is the \((T_i \times T_i)\) identity matrix, \(\mathbf{D }_i = \mathrm {bdiag}(\mathbf{1 }_{T_{i,1}}, \ldots , \mathbf{1 }_{T_{i,K}})\), \(\mathbf{J }_{T_{i}}\) is a \((T_i \times T_i)\) matrix of ones, \(\mathbf{a }_i = (a_{i,1} , \ldots , a_{i,K})^T\) and \(a_{i,k} = 1/(1-\rho _2 + (\rho _2 - \rho _1) T_{i,k})\).

Proof

Note that for \(0 \le \rho _1 \le \rho _2 < 1\) and \(T_{i,k}>0\) we have \(1-\rho _2 + (\rho _2 - \rho _1) T_{i,k} \ne 0\): Let \(\rho _2 = \rho _1 +\delta \), where \(\delta \ge 0\). Then \(1-\rho _2 + (\rho _2 - \rho _1) T_{i,k} = 1 - \rho _1 + \delta ( T_{i,k}-1) > 0\).

It is shown that \(\mathbf{F }_i \mathbf{R }_i = \mathbf{R }_i\mathbf{F }_i= \mathbf{I }_{T,i}\). Let \(d_{i,k} = T_{i,k} a_{i,k}\), \(\mathbf{d } = (d_{i,1}, \ldots , d_{i,K})^T\) and note that \(\mathbf{D }^T_i \mathbf{D }_i = \text {diag}(T_{i,1}, \ldots ,T_{i,K})\), \(\mathbf{D }^T_i \mathbf{J }_{T_i} = \text {diag}(T_{i,1}, \ldots , T_{i,K})\mathbf{J }_{K, T_i}\), \((1-\rho _2) \mathbf{a }^T_i + (\rho _2-\rho _1)\mathbf{d }^T_i = \mathbf{1 }^T_{K}\) and \(\mathbf{D }_i \mathbf{J }_{K, T_i} = \mathbf{J }_{T_i}\). Then

$$\begin{aligned} \mathbf{F }_i \mathbf{R }_i&= \left\{ \frac{1}{1-\rho _2} \mathbf{I }_{T_i} - \mathbf{D }_i \left[ \frac{\rho _2 - \rho _1}{1-\rho _2} \text {diag}(\mathbf{a }_i) + \frac{\rho _1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{a }_i\mathbf{a }^T_i\right] \mathbf{D }^T_i \right\} \\&= \mathbf{I }_{T_i} + \frac{(\rho _2 - \rho _1)}{1-\rho _2} \mathbf{D }_i \mathbf{D }^T_i + \frac{\rho _1 }{1-\rho _2} \mathbf{J }_{T_i}\\&\quad - \left\{ (\rho _2 - \rho _1) \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i + \frac{ (\rho _2 - \rho _1)^2}{1-\rho _2} \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i \mathbf{D }_i \mathbf{D }^T_i \right. \\&\left. \quad + \frac{\rho _1 (\rho _2 - \rho _1)}{1-\rho _2} \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i \mathbf{J }_{T_i} + \frac{\rho _1(1-\rho _2 )}{1+\rho _1 \sum _k d_{i,k}}\mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \right. \\&\left. \quad + \frac{\rho _1(\rho _2 - \rho _1)}{1+\rho _1 \sum _k d_{i,k}} \mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \mathbf{D }_i \mathbf{D }^T_i + \frac{\rho ^2_1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \mathbf{J }_{T_i} \right\} . \end{aligned}$$

Further, using the results from above,

$$\begin{aligned} (\rho _2 - \rho _1) \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i + \frac{ (\rho _2 - \rho _1)^2}{1-\rho _2} \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i \mathbf{D }_i \mathbf{D }^T_i = \frac{(\rho _2 - \rho _1)}{1-\rho _2} \mathbf{D }_i \mathbf{D }^T_i \end{aligned}$$

and

$$\begin{aligned}&\frac{\rho _1 (\rho _2 - \rho _1)}{1-\rho _2} \mathbf{D }_i \text {diag}(\mathbf{a }_i) \mathbf{D }^T_i \mathbf{J }_{T_i} + \frac{\rho _1(1-\rho _2 )}{1+\rho _1 \sum _k d_{i,k}}\mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \\&\qquad + \frac{\rho _1(\rho _2 - \rho _1)}{1+\rho _1 \sum _k d_{i,k}} \mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \mathbf{D }_i \mathbf{D }^T_i + \frac{\rho ^2_1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{D }_i \mathbf{a }_i\mathbf{a }^T_i \mathbf{D }^T_i \mathbf{J }_{T_i} \\&\quad =\rho _1 \mathbf{D }_i \left( \mathbf{a }_i + \frac{(\rho _2 - \rho _1)}{1-\rho _2} \mathbf{d }_i \right) \mathbf{1 }^T_{T_i} = \frac{\rho _1}{1-\rho _2} \mathbf{J }_{T_i} . \end{aligned}$$

Thus, \(\mathbf{F }_i\mathbf{R }_i = \mathbf{I }_{T,i}\). \(\mathbf{R }_i \mathbf{F }_i = \mathbf{I }_{T,i}\) follows from the symmetry of \(\mathbf{R }_i\). \(\square \)

Further note that

$$\begin{aligned} \mathbf{D }^T_i \mathbf{R }^{-1}_i&= \frac{1}{1-\rho _2} \mathbf{D }^T_i - \left[ \frac{\rho _2 - \rho _1}{1-\rho _2} \text {diag}(\mathbf{d }_i) + \frac{\rho _1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{d }_i\mathbf{a }^T_i\right] \mathbf{D }^T_i \\&= \left[ \frac{1}{1-\rho _2} \mathbf{I }_K - \frac{\rho _2 - \rho _1}{1-\rho _2} \text {diag}(\mathbf{d }_i) - \frac{\rho _1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{d }_i\mathbf{a }^T_i\right] \mathbf{D }^T_i \\&= \left[ \text {diag}(\mathbf{a }_i) -\frac{\rho _1}{1+\rho _1 \sum _k d_{i,k}} \mathbf{d }_i\mathbf{a }^T_i\right] \mathbf{D }^T_i. \end{aligned}$$

If \(\mathbf{Z }\) is regular, then its inverse exists and simplification of (7) and (8) leads to (10) and (11). On the other hand, we may write (5) as

$$\begin{aligned} \hat{\varvec{\theta }}^{(0)}&= \left( \sum _i \mathbf{X }^T_i \mathbf{W }_i^{-1} \mathbf{X }_i\right) ^{-1} \left( \sum _i \mathbf{X }^T_i \mathbf{W }_i^{-1} \mathbf{y }_i \right) \\&= \mathbf{Z }^{-1} \mathbf{V }^{1/2} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \mathbf{D }_i\right) ^{-1} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \widetilde{\mathbf{V }}^{-1/2}_i \mathbf{y }_i \right) . \end{aligned}$$

Taking the mean of \(\hat{\varvec{\theta }}^{(0)}\) with respect to \(\mathbf{y }\) conditional on \(\mathbf{Z }\), noting that \(E(\bar{\mathbf{y }}_i | \mathbf{Z }, \mathbf{r }_i) = E ( \bar{\mathbf{y }}_i | \mathbf{Z } )\) for all i, which follows from assuming that \(\Pr (\mathbf{r } | \mathbf{Z }) = \Pr (\mathbf{r }| \mathbf{Z } , \tilde{\mathbf{y }})\) for all possible \(\tilde{\mathbf{y }}\) and \(\mathbf{r }\), and \( E(\bar{\mathbf{y }}_i | \mathbf{Z }) = \mathbf{Z }\varvec{\theta }_0\) for all i [see model (1)],

$$\begin{aligned} \begin{aligned}&E\left( \hat{\varvec{\theta }}^{(0)}|\mathbf{Z },\mathbf{r }\right) \\&\quad = \mathbf{Z }^{-1} \mathbf{V }^{1/2} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \mathbf{D }_i\right) ^{-1} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \widetilde{\mathbf{V }}^{-1/2}_i E\left[ \mathbf{y }_i | \mathbf{Z },T_{i,1},\ldots T_{i,K} \right] \right) \\&\quad = \mathbf{Z }^{-1} \mathbf{V }^{1/2} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \mathbf{D }_i\right) ^{-1} \left( \sum _i \mathbf{D }^T_i \mathbf{R }_i^{-1} \mathbf{D }_i \mathbf{V }^{-1/2} E\left[ \bar{\mathbf{y }}_i | \mathbf{Z } \right] \right) \\&\quad = \mathbf{Z }^{-1} E\left( \bar{\mathbf{y }}_i | \mathbf{Z }\right) \\&\quad = \varvec{\theta }_0. \end{aligned} \end{aligned}$$
(14)

Therefore, replacing \(E(\bar{\mathbf{y }}_i | \mathbf{Z })\) by \(\bar{\mathbf{y }} = \sum _i \bar{\mathbf{y }}_i / n\), we can estimate \(\varvec{\theta }\) as given by (12) in Sect. 3. Note that \(\hat{\varvec{\theta }}_{\text {m}}\) is unbiased. From \(\text {Var}(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z }) = E(\text {Var}(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r })) + \text {Var}(E(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r }))\) and \(\text {Var}(E(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r })) = \mathbf{0 }\), we have \(\text {Var}(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z }) = E(\text {Var}(\hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r }))\). Thus, the variance can be written as

$$\begin{aligned} \begin{aligned} \text {Var}\left( \hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z }\right)&= E\left( \text {Var}\left( \hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r }\right) |\mathbf{Z }\right) \\&= \frac{1}{n^2}\, \mathbf{Z }^{-1} E\left( \sum _i \text {Var}\left( \bar{\mathbf{y }}_i|\mathbf{Z }, \mathbf{r }_i\right) |\mathbf{Z } \right) \mathbf{Z }^{-T} \\ \end{aligned} \end{aligned}$$
(15)

estimated by (13). From (14) and (15) it follows that \(\hat{\varvec{\theta }}_{\text {m}}\) is consistent.

For a comparison of linear combinations of \(\hat{\varvec{\theta }}_{\text {m}}\) with linear combinations of other unbiased estimators linear in \(\bar{\mathbf{y }} = n^{-1} \sum _i \mathbf{y }_i\) and marginal with respect to \(\mathbf{r }\), consider \(\hat{\varvec{\vartheta }}=\mathbf{A }^T \bar{\mathbf{y }}\). The matrix \(\mathbf{A }\) may account for dependencies within \(\bar{\mathbf{y }}\). Unbiasedness of \(\hat{\varvec{\vartheta }}\) implies \(E(\hat{\varvec{\vartheta }} | \mathbf{Z }) = \mathbf{A }^T E(\bar{\mathbf{y }} | \mathbf{Z }) = \mathbf{A }^T \mathbf{Z } \varvec{\theta }_0 = \varvec{\theta }_0\) and thus \( \mathbf{A }^{T} = \mathbf{Z }^{-1}\). Hence, there is no other unbiased estimator which is linear in \(\bar{\mathbf{y }}\) than \(\hat{\varvec{\theta }}_{\text {m}}\) that could be more efficient.

Another interesting point is a comparison of the variances of two estimators (7) and (12) if the “working” covariance matrix is correctly specified, i.e., \(\mathbf{W }_i =\varvec{\Sigma }_i\) for all i. Defining random variables

$$\begin{aligned} \mathbf{M }&= n^{-1} \sum _i \left( \mathbf{D }^T_i \mathbf{D }_i\right) ^{-1} \mathbf{D }^T_i \left( \mathbf{y }_i - \mathbf{D }_i \mathbf{Z } \varvec{\theta }_0\right) \\ \widetilde{\mathbf{M }}&= \left( \sum _i \mathbf{D }^T_i \varvec{\Sigma }^{-1}_i \mathbf{D }_i \right) ^{-1} \sum _i \mathbf{D }^T_i \varvec{\Sigma }^{-1}_i \left( \mathbf{y }_i - \mathbf{D }_i \mathbf{Z } \varvec{\theta }_0\right) \end{aligned}$$

and noting that the difference

$$\begin{aligned} \text {Var}\left( \hat{\varvec{\theta }}_{\text {m}}|\mathbf{Z },\mathbf{r }\right) - \text {Var}\left( \hat{\varvec{\theta }}|\mathbf{Z },\mathbf{r }\right) = \mathbf{Z }^{-1} E\left( \left( \mathbf{M } - \widetilde{\mathbf{M }}\right) \left( \mathbf{M } - \widetilde{\mathbf{M }}\right) ^T|\mathbf{Z },\mathbf{r }\right) \mathbf{Z }^{-T} \end{aligned}$$

is positive semi-definite, implies that (7) is asymptotically at least as efficient as (12).

B Estimators for Variances and Correlations

The variances as well as the correlations in \(\mathbf{W }_i\) are unknown. To calculate \(\hat{\varvec{\theta }}\) and \(\widehat{\text {Var}}(\hat{\varvec{\theta }})\) we therefore have to estimate \(\sigma ^2_{k}\), \(k=1,\ldots ,K\) , \(\rho _1\) and \(\rho _2\). This can be done by solving moment conditions as well, i.e., solving

$$\begin{aligned} \varvec{0}&= \sum _{i=1}^n \mathbf{G }_i \mathbf{K }_i \text {vec}\left( \mathbf{S }_i - \mathbf{W }_i\right) , \quad \text {where} \quad \mathbf{W }_i = \widetilde{\mathbf{V }}^{1/2}_i \mathbf{R }_i \widetilde{\mathbf{V }}^{1/2}_i , \\ \mathbf{K }_i&= \frac{\partial \, \mathbf{W }_i}{\partial \, \varvec{\xi }} , \quad \varvec{\xi } = \left( \sigma ^2_1,\ldots ,\sigma ^2_K, \sigma _{1,2} ,\ldots , \sigma _{K-1,K}\right) ^T, \end{aligned}$$

\(\sigma _{k,k'}\) are the covariances of observations in the k and \(k'\)th cells, \(\mathbf{G }_i = \text {bdiag}(\mathbf{I }_K,\mathbf{Q }_i)\)

$$\begin{aligned} \mathbf{Q }_i = \frac{\partial \, \varvec{\xi }}{\partial \, \begin{pmatrix} \rho _1 \\ \rho _2 \end{pmatrix}} \, , \quad \mathbf{S }_i = \left( \mathbf{y }_i - \mathbf{X }_i \hat{\varvec{\theta }}\right) \left( \mathbf{y }_i - \mathbf{X }_i \hat{\varvec{\theta }}\right) ^T \end{aligned}$$

and \(\text {vec}(\mathbf{A })\) stacks the m rows of the \((m \times p)\) matrix \(\mathbf{A }\) as \((p \times 1)\) column vectors over each other to form an \((mp \times 1)\) column vector (Swaminathan, 1976). For the derivations we use the calculus of McDonald (1976), McDonald & Swaminathan (1973) and Swaminathan (1976). These estimating equations are based on the assumption that the differences \(((y_{i,k,t}-\mathbf{z }^T_k \hat{\varvec{\theta }})(y_{i,k',t'}-\mathbf{z }^T_k \hat{\varvec{\theta }}) - \hat{\zeta })\), where \(\hat{\zeta }\) is one of \(\hat{\sigma }^2_{k}\), \(\hat{\rho }_1\) and \(\hat{\rho }_2\), are linearly independent. If this is not true, then the estimators for variances and correlations are not (asymptotically) efficient. However this is not necessary for \(\hat{\varvec{\theta }}\) to be (asymptotically) efficient (Newey & McFadden, 1994). Solving these estimating equations gives the explicit solutions for \(\sigma ^2_k\), \(\rho _1\) and \(\rho _2\) presented in Sect. 3.

C Counter Example

One of the necessary and sufficient conditions in Theorem 2 of Zyskind (1967) under which the simple linear least squares estimator is also a best linear unbiased estimator is that \(\varvec{\Sigma }\mathbf{P }=\mathbf{P }\varvec{\Sigma }\) is symmetric, where \(\varvec{\Sigma }=\text {bdiag}(\varvec{\Sigma }_1,\ldots ,\varvec{\Sigma }_n)\), \(\mathbf{P }= \mathbf{X }(\mathbf{X }^T \mathbf{X })^{-1} \mathbf{X }^T\) and \(\mathbf{X } = (\mathbf{X }^T_1,\ldots ,\mathbf{X }^T_n)^T\).

In the following, we will show that this does not hold for the design and the covariance matrix given in Sect. 2. Let \(\mathbf{D } = (\mathbf{D }^T_1, \ldots ,\mathbf{D }^T_n)^T\). Then \(\mathbf{X } = \mathbf{D } \mathbf{Z }\) and \(\mathbf{P } = \mathbf{D }\mathbf{Z } (\mathbf{Z }^T \mathbf{D }^T \mathbf{D } \mathbf{Z })^{-1} \mathbf{Z }^T \mathbf{D }^T\). However, \(\mathbf{D }^T \mathbf{D } = \sum _i \mathbf{D }^T_i \mathbf{D }_i = \sum _i \text {diag}(T_{i,1}, \ldots , T_{i,K})\) and therefore \(\mathbf{P } = \mathbf{D } (\sum _i \mathbf{D }^T_i \mathbf{D }_i)^{-1} \mathbf{D }^T\), since \(\mathbf{Z }\) is regular. \(\mathbf{P }\) is a partitioned matrix with matrices \(\mathbf{P }_{i,j}=\text {bdiag}(T^{-1}_1 \mathbf{J }_{T_{i,1},T_{j,1}}, \ldots , T^{-1}_K \mathbf{J }_{T_{i,K},T_{j,K}})\), where \(i,j=1,\ldots ,n\).

On the other hand, \(\varvec{\Sigma } = \text {bdiag}( \varvec{\Sigma }_1 , \ldots , \varvec{\Sigma }_n )\), where \(\varvec{\Sigma }_i = \widetilde{\mathbf{V }}^{1/2}_i \mathbf{R }_i \widetilde{\mathbf{V }}^{1/2}_i\), see Sect. 2. Thus, \(\varvec{\Sigma }\mathbf{P } \) is a partitioned matrix as well, with matrices

$$\begin{aligned} \mathbf{A }_{i,j}&= \varvec{\Sigma }_i \mathbf{P }_{i,j} \\&= (1-\rho _2) \text {bdiag}\left( \sigma ^2_1/T_1 \mathbf{J }_{T_{i,1},T_{j,1}},\ldots , \sigma ^2_K/T_K \mathbf{J }_{T_{i,K},T_{j,K}} \right) \\&\quad + (\rho _2 - \rho _1) \text {bdiag}\left( \sigma ^2_1 T_{i,1} /T_1 \mathbf{J }_{T_{i,1},T_{j,1}},\ldots , \sigma ^2_K T_{i,K}/T_K \mathbf{J }_{T_{i,K},T_{j,K}} \right) \\&\quad + \rho _1 \begin{pmatrix} \frac{ \sigma ^2_1 T_{i,1}}{T_1 } \mathbf{J }_{T_{i,1},T_{j,1}} &{} \cdots &{} \frac{ \sigma _1 \sigma _K T_{i,K}}{T_K } \mathbf{J }_{T_{i,1},T_{j,K}} \\ \vdots &{} \ddots &{} \vdots \\ \frac{ \sigma _K \sigma _1 T_{i,1}}{T_1 } \mathbf{J }_{T_{i,K},T_{j,1}} &{} \cdots &{} \frac{\sigma ^2_K T_{i,K} }{T_K } \mathbf{J }_{T_{i,K},T_{j,K}} \end{pmatrix}, \end{aligned}$$

which are again partitioned matrices with entries

$$\begin{aligned} \mathbf{B }_{k,l}^{i,j}&= \left\{ \begin{array}{ll} \frac{\sigma ^2_k \left( 1+\rho _2\left( T_{i,k} -1\right) \right) }{T_k} \, \mathbf{J }_{T_{i,k},T_{j,k}} &{} \quad \text {if } k=l \\ \frac{\sigma _k \sigma _l \rho _1 T_{i,l}}{T_l} \, \mathbf{J }_{T_{i,k},T_{j,l}} &{} \quad \text {if } k\ne l \end{array} \right. . \end{aligned}$$

For symmetry of \(\varvec{\Sigma }\mathbf{P }\) to hold, \(\mathbf{A }_{i,j}=\mathbf{A }_{j,i}^T\) and thus \(\mathbf{B }_{k,l}^{i,j} = (\mathbf{B }_{l,k}^{j,i})^T \) must hold for all ijkl. Although this obviously holds if \(T_{i,k}=T_{j,k}\) for all ijkl, it does not hold if the number of observations varies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiess, M., Jordan, P. & Wendt, M. Simplified Estimation and Testing in Unbalanced Repeated Measures Designs. Psychometrika 84, 212–235 (2019). https://doi.org/10.1007/s11336-018-9620-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-018-9620-2

Keywords

Navigation