Advertisement

Psychometrika

, Volume 83, Issue 2, pp 443–452 | Cite as

Unidimensional factor models imply weaker partial correlations than zero-order correlations

  • Riet van BorkEmail author
  • Raoul P. P. P. Grasman
  • Lourens J. Waldorp
Article

Abstract

In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.

Keywords

factor models partial correlations zero-order correlations 

Notes

Acknowledgements

Funding was provided by European Research Council (Career Integration Grant) (Grand No 631145) and European Research Council (Consolidator Grant) (Grand No 647209).

Supplementary material

11336_2018_9607_MOESM1_ESM.pdf (311 kb)
Supplementary material 1 (pdf 311 KB)

References

  1. Bollen, K. A., & Ting, K. (1993). Confirmatory tetrad analysis. Sociological Methodology, 23, 147–175.CrossRefGoogle Scholar
  2. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.CrossRefGoogle Scholar
  3. Chen, B., & Pearl, J. (2014). Graphical tools for linear structural equation modeling. Technical Report R-432, Department of Computer Science, University of California, Los Angeles, CA. Psychometrika (forthcoming). http://ftp.cs.ucla.edu/pub/stat ser/r432.pdf
  4. Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7, 309–319.CrossRefGoogle Scholar
  6. Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., et al. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26, 414–431.CrossRefGoogle Scholar
  7. de Fátima Salgueiro, M., Smith, P. W., & McDonald, J. W. (2008). The manifest association structure of the single-factor model: Insights from partial correlations. Psychometrika, 73, 665–670.CrossRefGoogle Scholar
  8. Ellis, J. L. (2014). An inequality for correlations in unidimensional monotone latent variable models for binary variables. Psychometrika, 79, 303–316.CrossRefPubMedGoogle Scholar
  9. Elshout, J. J., & Akkerman, A. E. (1975). Vijf persoonlijkheidsfactoren test 5PFT: Handleiding (The Five Personality Factor Test (5PFT): Manual). Nijmegen: Berkhout B.V.Google Scholar
  10. Eysenck, H. J. (1983). Psychophysiology and personality: Extraversion, neuroticism and psychoticism. In: Individual differences and psychopathology (pp. 13–30). Elsevier.Google Scholar
  11. Guttman, L. (1940). Multiple rectilinear prediction and the resolution into components. Psychometrika, 5, 75–99.CrossRefGoogle Scholar
  12. Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika, 18, 277–296.CrossRefGoogle Scholar
  13. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.CrossRefGoogle Scholar
  14. Langford, E., Schwertman, N., & Owens, M. (2001). Is the property of being positively correlated transitive? The American Statistician, 55, 322–325.CrossRefGoogle Scholar
  15. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.Google Scholar
  16. Rosenbaum, P. R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435.CrossRefGoogle Scholar
  17. Saris, W. E., Satorra, A., & Van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561–582.CrossRefGoogle Scholar
  18. Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 21, 124–127.CrossRefGoogle Scholar
  19. Smits, I. A. M., Dolan, C. V., Vorst, H. C., Wicherts, J. M., & Timmerman, M. E. (2013). Data from "cohort differences in big five personality factors over a periof of 25 years". Journal of Open Psychology Data, 1, 1–3.  https://doi.org/10.5334/jopd.e2.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2018

Authors and Affiliations

  1. 1.Department of Psychological MethodsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations