Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data

Article

Abstract

As a method to ascertain person and item effects in psycholinguistics, a generalized linear mixed effect model (GLMM) with crossed random effects has met limitations in handing serial dependence across persons and items. This paper presents an autoregressive GLMM with crossed random effects that accounts for variability in lag effects across persons and items. The model is shown to be applicable to intensive binary time series eye-tracking data when researchers are interested in detecting experimental condition effects while controlling for previous responses. In addition, a simulation study shows that ignoring lag effects can lead to biased estimates and underestimated standard errors for the experimental condition effects.

Keywords

eye-tracking data generalized linear mixed effect model intensive binary time series data random item effect 

Notes

Acknowledgements

We thank Dr. Paul De Boeck (Ohio State University and KU Leuven) for comments on an earlier draft and the reviewers for their constructive comments that have led to improvement on the first version of this paper. Funding The original data collection and this work were supported in part by National Science Foundation Grants BCS 12-57029 and BCS 15-56700 to Sarah Brown-Schmidt.

References

  1. Aitkin, M., & Alfó, M. (1998). Regression models for binary longitudinal responses. Statistics and Computing, 8, 289–307.CrossRefGoogle Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  3. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  4. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.CrossRefGoogle Scholar
  5. Barr, D. J. (2008). Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59, 457–474.CrossRefGoogle Scholar
  6. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.CrossRefGoogle Scholar
  7. Bauer, D. J., & Cai, L. (2009). Consequences of unmodeled nonlinear effects in multilevel models. Journal of Educational and Behavioral Statistics, 34, 97–114.CrossRefGoogle Scholar
  8. Bisconti, T., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved windows: A dynamical system approach. Journal of Gerontology, Series, B: Psychological Sciences and Social Sciences, 59, 158–167.CrossRefGoogle Scholar
  9. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised ed.). San Francisco, CA: Holden-Day.Google Scholar
  10. Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22, 409–425.CrossRefPubMedGoogle Scholar
  11. Broadbent, D. E., Cooper, P. F., FitzGerald, P., & Parkes, K. R. (1982). The Cognitive Failures Questionnaire (CFQ) and its correlates. British Journal of Clinical Psychology, 21, 1–16.CrossRefPubMedGoogle Scholar
  12. Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series model. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Psychometrics: A festschrift to Roderick. P. McDonald (pp. 415–452). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  13. Brown-Schmidt, S., & Fraundorf, S. H. (2015). Interpretation of informational questions modulated by joint knowledge and intonational contours. Journal of Memory and Language, 84, 49–74.CrossRefGoogle Scholar
  14. Chatfield, C. (2004). The analysis of time series: An introduction (6th ed.). London: Chapman and Hall/CRC.Google Scholar
  15. Cho, S.-J., & Rabe-Hesketh, S. (2011). Alternating imputation posterior estimation of models with crossed random effects. Computational Statistics and Data Analysis, 55, 12–25.CrossRefGoogle Scholar
  16. Cho, S.-J., Partchev, I., & De Boeck, P. (2012). Parameter estimation of multiple item profiles models. British Journal of Mathematical and Statistical Psychology, 65, 438–466.CrossRefPubMedGoogle Scholar
  17. Cho, S.-J., & De Boeck., P. (in press). A note on \(N\) in Bayesian information criterion (BIC) for item response models. Applied Psychological Measurement.Google Scholar
  18. Cox, M. D. (1970). A mathematical model of the Indian Ocean. Deep Sea Research and Oceanographic Abstracts, 17, 47–75.CrossRefGoogle Scholar
  19. De Boeck, P. (2008). Random item IRT models. Psychometrika, 73, 533–559.CrossRefGoogle Scholar
  20. de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L. B., Allen, N. B., & Hamaker, E. L. (2017). On the use of mixed Markov models for intensive longitudinal data. Multivariate Behavioral Research, 52, 747–767.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gelman, A., & Su, Y.-S. (2016). Arm: Data analysis using regression and multilevel/hierarchical models. R package version 1.9-3. Retrieved March 10, 2017, from https://CRAN.R-project.org/package=arm.
  22. Greven, S., & Kneib, T. (2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 97, 773–789.CrossRefGoogle Scholar
  23. Hallett, P. E. (1986). Eye movement. In K. Buff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance. New York, NY: Wiley.Google Scholar
  24. Hanna, J. E., & Brennan, S. E. (2007). Speakers eye gaze disambiguates referring expressions early during face-to-face conversation. Journal of Memory and Language, 57, 596–615.CrossRefGoogle Scholar
  25. Hamaker, E. L., van Hattum, P., Kuiper, R. M., & Hoijtink, H. (2011). Model selection based on information criteria in multilevel modeling. In J. Hox & J. K. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 231–255). New York, NY: Taylor & Francis.Google Scholar
  26. Hamaker, E. L., & Grasman, R. P. (2014). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492.PubMedGoogle Scholar
  27. Heagerty, P. J., & Zeger, S. L. (1998). Lorelogram: A regression approach to exploring dependence in longitudinal categorical responses. Journal of the American Statistical Association, 93, 150–162.CrossRefGoogle Scholar
  28. Heckman, J. J. (1981). The incidental parameters problem and the problem of initial condition in estimating a discrete time-discrete data stochastic process. In C. F. Manski & D. L. McFadden (Eds.), Structural analysis of discrete data and econometric applications (pp. 179–195). Cambridge, MA: MIT Press.Google Scholar
  29. Heller, D., Grodner, D., & Tanenhaus, M. K. (2008). The role of perspective in identifying domains of reference. Cognition, 108, 831–836.CrossRefPubMedGoogle Scholar
  30. Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  31. Hung, Y., Zarnitsyna, V., Zhang, Y., Zhu, C., & Wu, C. F. J. (2008). Binary time series modeling with application to adhesion frequency experiments. Journal of the American Statistical Association, 483, 1248–1259.CrossRefGoogle Scholar
  32. Irwin, D. E. (2004). Fixation location and fixation duration as indices of cognitive processing. In J. Henderson & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 105–134). New York, NY: Psychology Press.Google Scholar
  33. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Joe, H. (2008). Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics and Data Analysis, 52, 5066–5074.CrossRefGoogle Scholar
  35. Jongerling, J., Laurenceau, J. P., & Hamaker, E. L. (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334–349.CrossRefPubMedGoogle Scholar
  36. Kaiser, E., & Trueswell, J. C. (2008). Interpreting pronouns and demonstratives in Finnish: Evidence for a form-specific approach to reference resolution. Language and Cognitive Processes, 23, 709–748.CrossRefGoogle Scholar
  37. Kaufmann, H. (1987). Regression models for nonstationary categorical time series: Asymptotic estimation theory. Annals of Statistics, 15, 79–98.CrossRefGoogle Scholar
  38. Liu, S. (2017). Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels. British Journal of Mathematical and Statistical Psychology,.  https://doi.org/10.1111/bmsp.12096.Google Scholar
  39. Maas, C. J. M., & Hox, J. J. (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58, 127–137.CrossRefGoogle Scholar
  40. McMurray, B., Samelson, V. M., Lee, S. H., & Tomblin, J. B. (2010). Individual differences in online spoken word recognition: Implications for SLI. Cognitive Psychology, 60, 1–39.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59, 475–494.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Molenaar, P. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometricka, 50, 181–202.CrossRefGoogle Scholar
  43. Molenaar, P., & Ram, N. (2009). Advances in dynamic factor analysis of psychological processes. In J. Valsiner, P. Molenaar, M. Lyra, & N. Chaudhary (Eds.), Dynamic process methodology in the social and developmental sciences (pp. 255–268). New York, NY: Springer.CrossRefGoogle Scholar
  44. Molenberghs, G., & Verbeke, G. (2007). Likelihood ratio, score, and Wald tests in a constrained parameter space. The American Statistician, 61, 22–27.CrossRefGoogle Scholar
  45. Quené, H., & van den Bergh, H. (2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Journal of Memory and Language, 59, 413–425.CrossRefGoogle Scholar
  46. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved November 1, 2016, from https://www.R-project.org/.
  47. Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with the language-as-fixed-effect fallacy: Common misconceptions and alternative solutions. Journal of Memory and Language, 41, 416–426.CrossRefGoogle Scholar
  48. Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differences in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 124–147). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  49. Ryskin, R., Benjamin, A., Tullis, J., & Brown-Schmidt, S. (2015). Perspective-taking in comprehension, production, and memory: An individual differences approach. Journal of Experimental Psychology: General, 144, 898–915.CrossRefGoogle Scholar
  50. Ryskin, R. A., Qi, Z., Duff, M. C., & Brown-Schmidt, S. (2017). Verb biases are shaped through lifelong learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 781–794.PubMedGoogle Scholar
  51. Salverda, A., Kleinschmidt, D., & Tanenhaus, M. (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71, 145–163.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  53. Sedivy, J. C., Tanenhaus, M. K., Chambers, C. G., & Carlson, G. N. (1999). Achieving incremental semantic interpretation through contextual representation. Cognition, 71, 109–147.CrossRefPubMedGoogle Scholar
  54. Self, S. G., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610.CrossRefGoogle Scholar
  55. Skrondal, A., & Rabe-Hesketh, S. (2014). Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity. Journal of the Royal Statistical Society: Series C (Applied Statistics), 63, 211–237.CrossRefGoogle Scholar
  56. Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49, 67–77.CrossRefPubMedGoogle Scholar
  57. Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.CrossRefPubMedGoogle Scholar
  58. Unema, P. J. A., Pannasch, S., Joos, M., & Velichkovsky, B. M. (2005). Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration. Visual Cognition, 12, 473–494.CrossRefGoogle Scholar
  59. van Buuren, S. (1997). Fitting ARMA time series by structural equation models. Psychometrika, 62, 215–236.CrossRefGoogle Scholar
  60. van Rijn, P., Dolan, C. V., & Molenaar, P. C. M. (2010). State space methods for item response modeling of multisubject time series. In P. C. M. Molenaar & K. M. Newell (Eds.), Individual pathways of change: Statistical models for analyzing learning and development (pp. 125–151). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  61. Wang, X., Berger, J. O., & Burdick, D. S. (2013). Bayesian analysis of dynamic item response models in educational testing. The Annals of Applied Statistics, 7, 126–153.CrossRefGoogle Scholar
  62. Yoon, S. O., & Brown-Schmidt, S. (2014). Adjusting conceptual pacts in three-party conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 919–937.PubMedGoogle Scholar

Copyright information

© The Psychometric Society 2018

Authors and Affiliations

  • Sun-Joo Cho
    • 1
  • Sarah Brown-Schmidt
    • 1
  • Woo-yeol Lee
    • 1
  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations