Skip to main content

Advertisement

Log in

Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A new factor analysis (FA) procedure has recently been proposed which can be called matrix decomposition FA (MDFA). All FA model parameters (common and unique factors, loadings, and unique variances) are treated as fixed unknown matrices. Then, the MDFA model simply becomes a specific data matrix decomposition. The MDFA parameters are found by minimizing the discrepancy between the data and the MDFA model. Several algorithms have been developed and some properties have been discussed in the literature (notably by Stegeman in Comput Stat Data Anal 99:189–203, 2016), but, as a whole, MDFA has not been studied fully yet. A number of new properties are discovered in this paper, and some existing ones are derived more explicitly. The properties provided concern the uniqueness of results, covariances among common factors, unique factors, and residuals, and assessment of the degree of indeterminacy of common and unique factor scores. The properties are illustrated using a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi, K. (2012). Some contributions to data-fitting factor analysis with empirical comparisons to covariance-fitting factor analysis. Journal of the Japanese Society of Computational Statistics, 25, 25–38.

    Article  Google Scholar 

  • Adachi, K. (2015). A matrix-intensive approach to factor analysis. Journal of the Japan Statistical Society, Japanese Issue, 44, 363–382. (in Japanese).

    Google Scholar 

  • Anderson, T. W., & Rubin, H. (1956). Statistical inference in factor analysis. In J. Neyman (Ed.), Proceedings of the third Berkeley symposium on mathematical statistics and probability (Vol. 5, pp. 111–150). Berkeley, CA: University of California Press.

  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology (Statistics Section), 3, 77–85.

    Article  Google Scholar 

  • de Leeuw, J. (2004). Least squares optimal scaling of partially observed linear systems. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Recent developments of structural equation models: Theory and applications (pp. 121–134). Dordrecht: Kluwer Academic Publishers.

  • Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

    Google Scholar 

  • Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common factor theory. British Journal of Statistical Psychology, 8, 65–81.

    Article  Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  • Harman, H. H., & Jones, W. H. (1966). Factor analysis by minimizing residuals (Minres). Psychomerika, 31, 351–369.

    Article  Google Scholar 

  • Ihara, M., & Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51, 563–566.

    Article  Google Scholar 

  • Makino, N. (2015). Generalized data-fitting factor analysis with multiple quantification of categorical variables. Computational Statistics, 30, 279–292.

    Article  Google Scholar 

  • Mulaik, S. A. (1976). Comments on “The measurement of factorial indeterminacy”. Psychometrika, 41, 249–262.

    Article  Google Scholar 

  • Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69–76.

    Article  Google Scholar 

  • Sočan, G. (2003). The incremental value of minimum rank factor analysis. Ph.D. Thesis, Groningen: University of Groningen.

  • Spearman, C. (1904). “General Intelligence,” objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Article  Google Scholar 

  • Stegeman, A. (2016). A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts. Computational Statistics and Data Analysis, 99, 189–203.

    Article  Google Scholar 

  • Tanaka, Y., & Tarumi, T. (1995). Handbook for statistical analysis: Multivariate analysis (windows version). Tokyo: Kyoritsu-Shuppan. (in Japanese).

    Google Scholar 

  • ten Berge, J. M. F. (1983). A generalization of Kristof’s theorem on the trace of certain matrix products. Psychometrika, 48, 519–523.

    Article  Google Scholar 

  • ten Berge, J. M. F. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO Press.

    Google Scholar 

  • Thurstone, L. L. (1935). The vectors of mind. Chicago: University if Chicago Press.

    Google Scholar 

  • Unkel, S., & Trendafilov, N. T. (2010). Simultaneous parameter estimation in exploratory factor analysis: An expository review. International Statistical Review, 78, 363–382.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Japan Society for the Promotion of Science (Grant No. (C)-26330039). The authors thank the Editor, the anonymous Associate Editor, and the anonymous reviewers for their useful comments and suggestions which considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Adachi.

Appendix

Appendix

Here, we describe the procedure for generating (34) to have \({\hat{\mathbf{Z}}}= \mathbf{Z}^{*}+\mathbf{Z}_{\bot }^{*}\), i.e., (13), for the matrix \(\mathbf{Z}^{*}\) (33) given after Steps 1–4 in Sect. 2.

Let \({\mathbf{J_{1}}} = \mathbf{I}_{n}-n^{-1}{} \mathbf{1}_{n}{} \mathbf{1}_{{{n}}}{}^{\prime }, {\mathbf{J_K}}=\mathbf{I}_{n} - \mathbf{KK}^{\prime }\), and \({\mathbf{J_L}}= \mathbf{I}_{m+p} - \mathbf{LL}^{\prime }\). Using those matrices with arbitrary \(n \times m\) matrix G and \((m+p) \times m\) matrix H, we consider the following SVDs:

$$\begin{aligned} \mathbf{J}_{\mathbf{1}}{} \mathbf{J}_{\mathbf{K}}{} \mathbf{G} = {\varvec{\Gamma }}_{\mathbf{G}}{\varvec{\Theta }} _{\mathbf{G}}{\varvec{\Xi }}_{\mathbf{G}}^{\prime }\quad \hbox {and}\quad \mathbf{J}_{\mathbf{L}}{} \mathbf{H} ={\varvec{\Gamma }} _{\mathbf{H}}{\varvec{\Theta }}_{\mathbf{H}}{\varvec{\Xi }}_{\mathbf{H}}^{\prime } \end{aligned}$$
(A1)

with \(\Theta _{\mathbf{G}}\) and \(\Theta _{\mathbf{H}}\) being diagonal and

$$\begin{aligned} {\varvec{\Gamma }}_{\mathbf{G}}^{\prime }{\varvec{\Gamma }}_{\mathbf{G}} ={\varvec{\Gamma }} _{\mathbf{H}}^{\prime }{\varvec{\Gamma }}_{\mathbf{H}} = {\varvec{\Xi }}_{\mathbf{G}}^{\prime }{\varvec{\Xi }}_{\mathbf{G}} = {\varvec{\Xi }}_{\mathbf{H}}^{\prime }{\varvec{\Xi }}_{\mathbf{H}} = \mathbf{I}_{m}. \end{aligned}$$
(A2)

Those SVDs allow us to set \(\mathbf{K}_{\bot } = {\varvec{\Gamma }}_{\mathbf{G}}\) and \(\mathbf{L}_{\bot } = {\varvec{\Gamma }}_{\mathbf{H}}\) to generate (34), which is summed to (33) so that (13) is given by

$$\begin{aligned} {\hat{\mathbf{Z}}} = n^{1/2}{\tilde{\mathbf{K}}}{\tilde{\mathbf{L}}}=n^{1/2}\mathbf{KL}^{\prime }+n^{1/2}{\varvec{\Gamma }}_{\mathbf{G}}{\varvec{\Gamma }} _{\mathbf{H}}^{\prime } = \mathbf{XS}_{\mathrm{XX}}^{-1}{} \mathbf{S}_{\mathrm{XZ}}+n^{1/2}{\varvec{\Gamma }} _{\mathbf{G}}{\varvec{\Gamma }}_{\mathbf{H}}^{\prime }. \end{aligned}$$
(A3)

It is because (A1) leads to \({\varvec{\Gamma }}_{\mathbf{G}} = \mathbf{J}_{1}{} \mathbf{J}_{K}\mathbf{G}\Xi _{\mathbf{G}}{\varvec{\Theta }}_{\mathbf{G}}^{-1}\) and \({\varvec{\Gamma }}_{\mathbf{H}} = \mathbf{J}_\mathbf{L}{} \mathbf{H}\Xi _{\mathbf{H}}{\varvec{\Theta }}_{\mathbf{H}}^{-1}\), which imply that

$$\begin{aligned} \mathbf{1}_{n}^{\prime }{\varvec{\Gamma }}_{\mathbf{G}} = \mathbf{0}_{m}, \mathbf{L}^{\prime }{\varvec{\Gamma }}_{\mathbf{H}}={_{p}{} \mathbf{O}}_{m},\ \text { and }{} \mathbf{K}^{\prime }{\varvec{\Gamma }}_{\mathbf{G}}={_{p}{} \mathbf{O}}_{m}. \end{aligned}$$
(A4)

Here, the last identity is derived as \(\mathbf{K}^{\prime }{\varvec{\Gamma }} _{\mathbf{G}} = \mathbf{K}^{\prime }{} \mathbf{J}_\mathbf{1}{} \mathbf{J}_{\mathbf{K}}\mathbf{{G}}{\varvec{\Xi }}_{\mathbf{G}}{\varvec{\Theta }}_{\mathbf{G}}^{-1}= {\mathbf{K}}^{\prime }{} \mathbf{J}_{\mathrm{K}}{\mathbf{G}}{\varvec{\Xi }}_{{ \mathbf{G}}}{\varvec{\Theta }}_{\mathbf{G}}^{-1 }={_{p}{} \mathbf{O}_{m}}\) using \(\mathbf{J}_{\mathbf{1}}{} \mathbf{{K}} = \mathbf{K}\) which follows from \(\mathbf{1}_{n}^{\prime }{} \mathbf{K} = {\mathbf{0}_{p}}^{\prime }\) (Adachi, 2012). The equations \(\mathbf{{K}}^{\prime }{} \mathbf{K} = \mathbf{L}^{\prime }{} \mathbf{L} = \mathbf{I}_{p}\) following from SVD (14) and the above (A2), (A4), and \(\mathbf{1}_{n}^{\prime }{} \mathbf{K} = \mathbf{0}_{{p}^{\prime }}\) allow us to find that \({\tilde{\mathbf{K}}} = [\mathbf{K}, \mathbf{K}_{\bot } ] = [\mathbf{K}, {\varvec{\Gamma }}_{\mathbf{G}}\)] and \({\tilde{\mathbf{L}}}'= [\mathbf{L}, \mathbf{L}_{\bot }] = [\mathbf{L},{\varvec{\Gamma }}_{\mathbf{H}}\)] satisfy \({{\tilde{\mathbf{K}}}'\tilde{\mathbf{K}}}={{\tilde{\mathbf{L}}}'\tilde{\mathbf{L}}}={\tilde{\mathbf{L}}}{\tilde{\mathbf{L}}}'= \mathbf{I}_{p+m}\) and \(\mathbf{1}_{n}^{\prime } {\hat{\mathbf{Z}}} = \mathbf{1}_{n}^{\prime }[\mathbf{K}\), \({\varvec{\Gamma }}_{\mathbf{G}}][\mathbf{L}\), \({\varvec{\Gamma }}_{\mathbf{H}}]^{\prime } = \mathbf{0}_{p+m}\): (A3) is the optimal with satisfying (4) and (5).

      Thus, we can obtain a factor score matrix Z with the following procedure:

Step 1.:

Generate G and H randomly

Step 2.:

Perform SVDs in (A1)

Step 3.:

Obtain \({\hat{\mathbf{Z}}}\) with (A3)

Step 4.:

Replace F in \({\hat{\mathbf{Z}}}= [{\hat{\mathbf{F}}},{\hat{\mathbf{U}}}\)] by rotated \({\hat{\mathbf{F}}}{} \mathbf{T}\).

Here, each element of G and H is sampled randomly from the uniform distribution ranging from \(-\,1\) to 1, and the matrix T is the orthonormal matrix for the varimax rotation giving the MDFA loadings in Table 2. The replication of the steps gives a number of \({\hat{\mathbf{Z}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, K., Trendafilov, N.T. Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis. Psychometrika 83, 407–424 (2018). https://doi.org/10.1007/s11336-017-9600-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-017-9600-y

Keywords

Navigation