Psychometrika

, Volume 82, Issue 4, pp 904–927 | Cite as

Generalized Network Psychometrics: Combining Network and Latent Variable Models

Article

Abstract

We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of structural equation modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework latent network modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance–covariance structure of indicators is modeled as a network. We term this generalization residual network modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms perform adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.

Keywords

network models structural equation modeling simulation study software 

Supplementary material

11336_2017_9557_MOESM2_ESM.zip (34 kb)
Supplementary material 1 (zip 33 KB)

References

  1. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  2. Benet-Martinez, V., & John, O. (1998). Los Cinco Grandes across cultures and ethnic groups: Multitrait multimethod analyses of the big five in Spanish and English. Journal of Personality and Social Psychology, 75, 729–750.CrossRefPubMedGoogle Scholar
  3. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–346.CrossRefPubMedGoogle Scholar
  4. Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089–1108.CrossRefPubMedGoogle Scholar
  5. Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.CrossRefPubMedGoogle Scholar
  6. Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PloS ONE, 6(11), e27407.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.CrossRefGoogle Scholar
  8. Chandrasekaran, V., Parrilo, P. A., & Willsky, A. S. (2012). Latent variable graphical model selection via convex optimization (with discussion). The Annals of Statistics, 40(4), 1935–1967.CrossRefGoogle Scholar
  9. Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.CrossRefGoogle Scholar
  10. Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., et al. (2015). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13–29.CrossRefGoogle Scholar
  11. Cramer, A. O. J., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., et al. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414–431.CrossRefGoogle Scholar
  12. Cramer, A. O. J., Waldorp, L., van der Maas, H., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2–3), 137–150.CrossRefPubMedGoogle Scholar
  13. Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Toward a formalized account of attitudes: The causal attitude network (CAN) model. Psychological Review, 123(1), 2–22.CrossRefPubMedGoogle Scholar
  14. Dempster, A. P. (1972). Covariance selection. Biometrics, 28(1), 157–175.CrossRefGoogle Scholar
  15. Digman, J. (1989). Five robust trait dimensions: Development, stability, and utility. Journal of Personality, 57(2), 195–214.CrossRefPubMedGoogle Scholar
  16. Dziak, J. J., Coffman, D. L., Lanza, S. T., & Li, R. (2012). Sensitivity and specificity of information criteria. The Methodology Center and Department of Statistics: Penn State, The Pennsylvania State University.Google Scholar
  17. Ellis, J. L., & Junker, B. W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62(4), 495–523.CrossRefGoogle Scholar
  18. Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (in press). Network psychometrics. In Irwing, P., Hughes, D., and Booth, T., (Eds.), Handbook of psychometrics. Wiley, New York, NY.Google Scholar
  19. Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2016). Discovering psychological dynamics in time-series data. arXiv preprintarXiv:1609.04156.Google Scholar
  20. Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 23, 2020–2028.Google Scholar
  21. Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, O. J., et al. (2015). From loss to loneliness: The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256–265.CrossRefPubMedGoogle Scholar
  22. Fried, E. I., & van Borkulo, C. (2016). Mental disorders as networks of problems: A review of recent insights.Google Scholar
  23. Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310–319.CrossRefPubMedGoogle Scholar
  24. Goldberg, L. (1993). The structure of phenotypic personality traits. American Psychologist, 48(1), 26–34.CrossRefPubMedGoogle Scholar
  25. Goldberg, L. R. (1990). An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology, 59(6), 1216–1229.CrossRefPubMedGoogle Scholar
  26. Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  27. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.CrossRefGoogle Scholar
  28. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.CrossRefGoogle Scholar
  29. Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei, 31(1), 253–258.Google Scholar
  30. Isvoranu, A. M., Borsboom, D., van Os, J., & Guloksuz, S. (2016a). A network approach to environmental impact in psychotic disorders: Brief theoretical framework. Schizophrenia Bulletin, 42(4), 870–873.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Isvoranu, A. M., van Borkulo, C. D., Boyette, L. L., Wigman, J. T., Vinkers, C. H., Borsboom, D., & Group Investigators. (2017). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia bulletin, 43(1), 187–196.Google Scholar
  32. Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566.CrossRefGoogle Scholar
  33. Jöreskog, K. G. (1967). A general approach to confirmatory maximum likelihood factor analysis. ETS Research Bulletin Series, 1967(2), 183–202.CrossRefGoogle Scholar
  34. Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.Google Scholar
  35. Kolaczyk, E. D. (2009). Statistical analysis of network data. New York, NY: Springer.CrossRefGoogle Scholar
  36. Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press.Google Scholar
  37. Kossakowski, J. J., Epskamp, S., Kieffer, J. M., van Borkulo, C. D., Rhemtulla, M., & Borsboom, D. (2015). The application of a network approach to health-related quality of life (HRQoL): Introducing a new method for assessing hrqol in healthy adults and cancer patient. Quality of Life Research, 25, 781–792.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lauritzen, S. L. (1996). Graphical models. Oxford: Clarendon Press.Google Scholar
  39. Lawley, D. N. (1940). VI.—the estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60(01), 64–82.CrossRefGoogle Scholar
  40. Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Oxford: Addison-Wesley.Google Scholar
  41. MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114(1), 185–199.CrossRefPubMedGoogle Scholar
  42. Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85–110.CrossRefPubMedGoogle Scholar
  43. Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). Bayesian inference for low-rank ising networks. Scientific reports, 5(9050), 1–7.Google Scholar
  44. McCrae, R. R., & Costa, P. T. (1997). Personality trait structure as a human universal. American Psychologist, 52(5), 509–516.CrossRefPubMedGoogle Scholar
  45. McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1), 12–16.Google Scholar
  46. McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836–849.CrossRefGoogle Scholar
  47. Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: MIT press.Google Scholar
  48. Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., et al. (2016). Openmx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549.CrossRefPubMedGoogle Scholar
  49. Pan, J., Ip, E., & Dube, L. (in press). An alternative to post-hoc model modification in confirmatory factor analysis: The bayesian lasso. Psychological Methods.Google Scholar
  50. Pearl, J. (2000). Causality: Models, reasoning, and inference. New York, NY: Cambridge University Press.Google Scholar
  51. Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.CrossRefGoogle Scholar
  52. Revelle, W. (2010). psych: Procedures for Psychological, Psychometric, and Personality Research (R package version 1.0-93). Northwestern University, Evanston, IL.Google Scholar
  53. Rosa, M., Friston, K., & Penny, W. (2012). Post-hoc selection of dynamic causal models. Journal of Neuroscience Methods, 208(1), 66–78.CrossRefPubMedGoogle Scholar
  54. Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53.CrossRefGoogle Scholar
  55. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 58, 267–288.Google Scholar
  56. van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., et al. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1–10.Google Scholar
  57. van Borkulo, C. D., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 1219–1226.CrossRefPubMedGoogle Scholar
  58. van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842–861.CrossRefPubMedGoogle Scholar
  59. Ware, J. E, Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30, 473–483.CrossRefPubMedGoogle Scholar
  60. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557–585.Google Scholar
  61. Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5(3), 161–215.CrossRefGoogle Scholar
  62. Yin, J., & Li, H. (2011). A sparse conditional gaussian graphical model for analysis of genetical genomics data. The Annals of Applied Statistics, 5(4), 2630–2650.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.CrossRefGoogle Scholar
  64. Zou, H., Hastie, T., Tibshirani, R., et al. (2007). On the degrees of freedom of the lasso. The Annals of Statistics, 35(5), 2173–2192.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2017

Authors and Affiliations

  • Sacha Epskamp
    • 1
  • Mijke Rhemtulla
    • 1
  • Denny Borsboom
    • 1
  1. 1.University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations