Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1–23. doi:10.1177/0146621697211001.
Article
Google Scholar
Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22(1), 47–76.
Article
Google Scholar
Antal, T. (2007). On the latent regression model of item response theory. Research Report No. RR-07-12. Princeton, NJ: Educational Testing Service.
Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). Boca Raton, FL: CRC. doi:10.2307/2532822.
Blossfeld, H.-P., Roßbach, H.-G., & von Maurice, J. (2011). Education as a lifelong process—The German national educational panel study (NEPS) [Special issue]. In Zeitschrift für Erziehungswissenschaft, 14. Wiesbaden: Springer VS.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459. doi:10.1007/BF02293801.
Article
Google Scholar
Cai, L. (2010). Metropolis-Hastings Robbins–Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307–335. doi:10.3102/1076998609353115.
Article
Google Scholar
Cai, L., & Thissen, D. (2015). Modern approaches to parameter estimation in item response theory. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment. New York: Routledge.
Google Scholar
Culbertson, M. (2011, April). Is it wrong? Handling missing responses in IRT. Speech presented at the annual meeting of the National Council on Measurement in Education, New Orleans, LA.
De Boeck, P. (2008). Random item IRT models. Psychometrika, 73(4), 533–559.
Article
Google Scholar
DeMars, C. (2002). Incomplete data and item parameter estimates under JMLE and MML. Applied Measurement in Education, 15, 15–31. doi:10.1207/S15324818AME1501_02.
Article
Google Scholar
Diggle, P., & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43(1), 49–93.
Article
Google Scholar
Enders, C. K. (2010). Applied missing data analysis. New York: The Guilford Press.
Google Scholar
Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.
Article
Google Scholar
Frey, A., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet designs in large-scale assessments of student achievement: Theory and practice. Educational Measurement: Issues and Practice, 28(3), 39–53. doi:10.1111/j.1745-3992.2009.00154.x.
Article
Google Scholar
Glas, C. A. W., & Pimentel, J. L. (2008). Modeling nonignorable missing data in speeded tests. Educational and Psychological Measurement, 68(6), 907–922. doi:10.1177/0013164408315262.
Article
Google Scholar
Glynn, R. J., Laird, N. M., & Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponses. In H. Wainer (Ed.), Drawing inferences from self-selected samples. New York: Springer. doi:10.1007/978-1-4612-4976-4_10.
Harwell, M. R., Baker, F. B., & Zwarts, M. (1988). Item parameter estimation via marginal maximum likelihood and an em algorithm: A didactic. Journal of Educational and Behavioral Statistics, 13(3), 243–271.
Article
Google Scholar
Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.
Google Scholar
Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–61. doi:10.2307/1912352.
Article
Google Scholar
Holman, R., & Glas, C. A. W. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical and Statistical Psychology, 58(1), 1–17. doi:10.1111/j.2044-8317.2005.tb00312.x.
Article
PubMed
Google Scholar
Hsu, Y. (2000). On the Bock–Aitkin procedure—From an EM algorithm perspective. Psychometrika, 65, 547–549. doi:10.1007/BF02296345.
Article
Google Scholar
Huisman, M. (2000). Imputation of missing item responses: Some simple techniques. Quality & Quantity, 34, 331–351. doi:10.1023/A:1004782230065.
Article
Google Scholar
Kiefer, T., Robitzsch, A., & Wu, M. (2015). Tam: Test analysis modules [Computer software manual]. R package version 1.14-0. Retrieved from http://CRAN.R-project.org/package=TAM.
Korobko, O. K., Glas, C. A. W., Bosker, R. J., & Luyten, J. W. (2008). Comparing the difficulty of examination subjects with item response theory. Journal of Educational Measurement, 45, 137–155. doi:10.1111/j.1745-3984.2007.00057.x.
Article
Google Scholar
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134. doi:10.2307/2290705.
Google Scholar
Little, R. J. A. (2008). Selection and pattern-mixture models. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 409–432). Boca Raton, FL: Chapman & Hall/CRC.
Chapter
Google Scholar
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.
Google Scholar
Lord, F. M. (1974). Estimation of latent ability and item parameters when there are omitted responses. Psychometrika, 39, 247–264. doi:10.1007/BF02291471.
Article
Google Scholar
Lord, F. M. (1983). Maximum likelihood estimation of item response parameters when some responses are omitted. Psychometrika, 48, 477–482. doi:10.1007/BF02293689.
Article
Google Scholar
Ludlow, L. H., & O’Leary, M. (1999). Scoring omitted and not-reached items: Practical data analysis implications. Educational and Psychological Measurement, 59(4), 615–630. doi:10.1177/0013164499594004.
Article
Google Scholar
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359–381. doi:10.1007/BF02306026.
Article
Google Scholar
Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80(392), 993–997. doi:10.1080/01621459.1985.10478215.
Article
Google Scholar
Mislevy, R. J. (1987). Exploiting auxiliary information about examinees in the estimation of item parameters. Applied Psychological Measurement, 11(1), 81–91. doi:10.1177/014662168701100106.
Article
Google Scholar
Mislevy, R. J. (1988). Exploiting auxiliary information about items in the estimation of Rasch item diffculty parameters. Applied Psychological Measurement, 12(3), 281–296. doi:10.1177/014662168801200306.
Article
Google Scholar
Mislevy, R. J., & Wu, P. K. (1996). Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. Research Report No. RR-96-30. Princeton, NJ: Educational Testing Service.
Molenberghs, G., Kenward, M. G., & Lesaffre, E. (1997). The analysis of longitudinal ordinal data with nonrandom drop-out. Biometrika, 84(1), 33–44.
Article
Google Scholar
Moustaki, I., & Knott, M. (2000). Weighting for item non-response in attitude scales by using latent variable models with covariates. Journal of the Royal Statistical Society, Series A, 163, 445–459. doi:10.1111/1467-985X.00177.
Article
Google Scholar
Muthén, B. O., & Muthén, L. K. (1998–2012). Mplus User’s Guide (Version 7) [Computer software manual]. Los Angeles, CA: Muthn and Muthn.
OECD. (2009). PISA 2009. Technical Report. Paris: OECD.
O’Muircheartaigh, C., & Moustaki, I. (1999). Symmetric pattern models: A latent variable approach to item non-response in attitudes scales. Journal of the Royal Statistic Society, 162, 177–194. doi:10.1111/1467-985X.00129.
Article
Google Scholar
Pohl, S., Gräfe, L., & Rose, N. (2014). Dealing with omitted and not-reached items in competence tests: Evaluating approaches accounting for missing responses in item response theory models. Educational and Psychological Measurement, 74, 423–452. doi:10.1177/0013164413504926.
Article
Google Scholar
Pohl, S., Haberkorn, K., Hardt, K., & Wiegand, E. (2012). NEPS technical report for reading ? scaling results of starting cohort 3 in fifth grade. NEPS Working Paper No. 15. Bamberg: Otto-Friedrich-Universitt, Nationales Bildungspanel. Retrieved from https://www.neps-data.de/de-de/projekt%C3%BCbersicht/publikationen/nepsworkingpapers.aspx.
Robitzsch, A., & Ldtke, O. (2015). Ein genereller Ansatz zur Modellierung fehlender Item Responses in IRT-Modellen [A general approach for modeling item nonresponses in IRT models]. Speech presented at the 12. Tagung der Fachgruppe Methoden und Evaluation, Jena, September 2015.
Rose, N. (2013). Item nonresponses in educational and psychological measurement. Doctoral Thesis, Friedrich-Schiller-University, Jena. Retrieved from http://d-nb.info/1036873145/34.
Rose, N. (2015). Commonalities and differences in IRT-based methods for nonignorable item-nonresponses. Psychological Test and Assessment Modeling, 57, 472–478.
Google Scholar
Rose, N., von Davier, M., & Xu, X. (2010). Modeling nonignorable missing data with IRT. Research Report No. RR-10-11. Princeton, NJ: Educational Testing Service.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. doi:10.1093/biomet/63.3.581.
Article
Google Scholar
Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall. doi:10.1201/9781439821862.
Book
Google Scholar
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. doi:10.1037/1082-989X.7.2.147.
Article
PubMed
Google Scholar
Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70(3), 533–555. doi:10.1007/s11336-003-1141-x.
Google Scholar
Van der Linden, W. J., Veldkamp, B. P., & Carlson, J. E. (2004). Optimizing balanced incomplete block designs for educational assessments. Applied Psychological Measurement, 28(5), 317–331. doi:10.1177/0146621604264870.
Article
Google Scholar
von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement: Interdisciplinary Research and Perspectives, 7, 67–74.
Google Scholar
von Davier, M., DiBello, L., & Yamamoto, K. (2008). Reporting test outcomes using models for cognitive diagnosis. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 151–176). Cambridge, MA: Hogrefe & Huber.
Google Scholar
von Davier, M., & Sinharay, S. (2010). Stochastic approximation methods for latent regression item response models. Journal of Educational and Behavioral Statistics, 35(2), 174–193.
Article
Google Scholar
Winship, C., & Mare, R. (1992). Models for sample selection bias. Annual Review of Sociology, 327–350. doi:10.1146/annurev.so.18.080192.001551.
Wu, M. L., Adams, R. J., & Wilson, M. R. (1998). ACER ConQest: Generalised item response modelling software [Computer software manual]. Mebourne: Australia.