Skip to main content

Advertisement

Log in

A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The Q-matrix of a cognitively diagnostic test is said to be complete if it allows for the identification of all possible proficiency classes among examinees. Completeness of the Q-matrix is therefore a key requirement for any cognitively diagnostic test. However, completeness of the Q-matrix is often difficult to establish, especially, for tests with a large number of items involving multiple attributes. As an additional complication, completeness is not an intrinsic property of the Q-matrix, but can only be assessed in reference to a specific cognitive diagnosis model (CDM) supposed to underly the data—that is, the Q-matrix of a given test can be complete for one model but incomplete for another. In this article, a method is presented for assessing whether a given Q-matrix is complete for a given CDM. The proposed procedure relies on the theoretical framework of general CDMs and is therefore legitimate for CDMs that can be reparameterized as a general CDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradshaw, L., Izsak, A., Templin, J., & Jacobson, E. (2014). Diagnosing teachers understandings of rational numbers: Building a multidimensional test within the diagnostic classification framework. Educational Measurement: Issues and Practice, 33, 2–14.

    Article  Google Scholar 

  • Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50, 123–140.

    Article  Google Scholar 

  • Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37, 598–618.

    Article  Google Scholar 

  • Chiu, C.-Y., & Douglas, J. A. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response profiles. Journal of Classification, 30, 225–250.

    Article  Google Scholar 

  • Chiu, C.-Y., & Köhn, H.-F. (2016). The reduced RUM as a logit model: Parameterization and constraints. Psychometrika, 81, 350–370.

    Article  PubMed  Google Scholar 

  • Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343–362.

    Article  Google Scholar 

  • de la Torre, J. (2009). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33, 163–183; Journal of Educational and Behavioral Statistics, 34, 115–130.

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • de la Torre, J. (2014). Personal Communication.

  • de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.

    Article  Google Scholar 

  • de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73, 595–624.

    Article  Google Scholar 

  • de la Torre, J., & Lee, Y.-S. (2013). Evaluating the Wald test for item-level comparison of saturated and reduced models in cognitive diagnosis. Journal of Educational Measurement, 50, 355–373.

    Article  Google Scholar 

  • DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.

    Article  Google Scholar 

  • DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36, 447–468.

    Article  Google Scholar 

  • DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Psychometrics (Vol. 26, pp. 979–1030). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Feng, Y., Habing, B. T., & Huebner, A. (2013). Parameter estimation of the Reduced RUM using the EM algorithm. Applied Psychological Measurement.

  • Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skill diagnosis. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Psychometrics (Vol. 26, pp. 1031–1038). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Doctoral dissertation). Available from ProQuest Dissertations and Theses database (UMI No. 3044108).

  • Hartz, S. M., & Roussos, L. A. (October 2008). The fusion model for skill diagnosis: Blending theory with practicality. (Research report No. RR-08-71). Princeton, NJ: Educational Testing Service.

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26, 31–73.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Jurich, D. P., & Bradshaw, L. P. (2014). An illustration of diagnostic classification modeling in student learning outcomes assessment. International Journal of Testing, 14, 49–72.

    Article  Google Scholar 

  • Kim, Y.-H. (2011). Diagnosing EAP writing ability using the reduced reparameterized unified model. Language Testing, 28, 509–541.

    Article  Google Scholar 

  • Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Li, H. (2011). A cognitive diagnostic analysis of the MELAB reading test. Spaan Fellow, 9, 17–46.

    Google Scholar 

  • Li, H., & Suen, H. K. (2013). Constructing and validating a Q-matrix for cognitive diagnostic analyses of a reading test. Educational Assessment, 18, 1–25.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36, 548–564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19, 1790–1817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 33, 379–416.

    Google Scholar 

  • Mislevy, R. J. (1996). Test theory reconceived. Journal of Educational Measurement, 33, 379–416.

    Article  Google Scholar 

  • Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement. Theory, methods, and applications. New York: Guilford.

    Google Scholar 

  • Su, Y.-L., Choi, K. M., Lee, W.-C., Choi, T., & McAninch, M. (2013). Hierarchical cognitive diagnostic analysis for TIMSS 2003 mathematics. CASMA Research Report 35. Center for Advanced Studies in Measurement and Assessment (CASMA), University of Iowa.

  • Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society Series C (Applied Statistics), 51, 337–350.

    Article  Google Scholar 

  • Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345–354.

    Article  Google Scholar 

  • Tatsuoka, K. K. (1984). Analysis of errors in fraction addition and subtraction problems (Report NIE-G-81-0002). Urbana, IL: University of Illinois, Computer-based Education Research Library.

  • Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconception in the pattern classification approach. Journal of Educational and Behavioral Statistics, 12, 55–73.

    Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317–339.

    Article  PubMed  Google Scholar 

  • Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32, 37–50.

    Article  Google Scholar 

  • von Davier, M. (2005, September). A general diagnostic model applied to language testing data (Research report No. RR-05-16). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–301.

    Article  Google Scholar 

  • von Davier, M. (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yi Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhn, HF., Chiu, CY. A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests. Psychometrika 82, 112–132 (2017). https://doi.org/10.1007/s11336-016-9536-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9536-7

Keywords

Navigation