Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Applied Psychological Measurement, 13, 113–127.
Article
Google Scholar
Ackerman, T. A. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 7, 255–278.
Article
Google Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
Article
Google Scholar
Ansley, T. N., & Forsyth, R. A. (1985). An examination of the characteristics of unidimensional IRT parameter estimates derived from two-dimensional data. Applied Psychological Measurement, 9, 37–48.
Article
Google Scholar
Béguin, A. A., & Glas, C. A. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66, 541–561.
Article
Google Scholar
Bock, D. R., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12, 261–280.
Article
Google Scholar
Bock, D. R., Gibbons, R., Schilling, S., Muraki, E., Wilson, D., & Wood, R. (2003). Testfact 4.0. In Computer software and manual. Lincolnwood, IL: Scientific Software International.
Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395–414.
Article
Google Scholar
Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75, 33–57.
Article
Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39, 1–38.
Google Scholar
Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90, 1200–1224.
Article
Google Scholar
Embretson, S. E. (1984). A general latent trait model for response processes. Psychometrika, 49, 175–186.
Article
Google Scholar
Embretson, S. E., & Reise, S. P. (2000). Psychometric methods: Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.
Google Scholar
Eysenck, S., & Barrett, P. (2013). Re-introduction to cross-cultural studies of the EPQ. Personality and Individual Differences, 54(4), 485–489.
Article
Google Scholar
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267–269.
Article
PubMed
Google Scholar
Friedman, J., Hastie, T., Hofling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1, 302–332.
Article
Google Scholar
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1.
Article
PubMed
PubMed Central
Google Scholar
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
Article
Google Scholar
Kang, T. (2006). Model selection methods for unidimensional and multidimensional IRT models. Madison, WI: University of Wisconsin.
Google Scholar
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Google Scholar
Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675.
Google Scholar
Maydeu-Olivares, A., & Liu, Y. (2015). Item diagnostics in multivariate discrete data. Psychological Methods, 20, 276–292.
Article
PubMed
Google Scholar
McDonald, R. P. (1967). Nonlinear factor analysis. Psychometric Monographs, No. 15. Richmond, VA: Psychometric Corporation.
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379–396.
Article
Google Scholar
McKinley, R. L. (1989). Confirmatory analysis of test structure using multidimensional item response theory. Technical Report No. RR-89-31. Princeton, NJ: Educational Testing Service.
McKinley, R. L., & Reckase, M. D. (1982). The use of the general Rasch model with multidimensional item response data. Technical Report No. ONR-82-1. Iowa City, IA: American College Testing Program.
Reckase, M. D. (1972). Development and application of a multivariate logistic latent trait model. Unpublished Doctoral Dissertation, Syracuse University, Syracuse, NY.
Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21, 25–36.
Article
Google Scholar
Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.
Book
Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
Article
Google Scholar
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583–639.
Article
Google Scholar
Svetina, D., & Levy, R. (2012). An overview of software for conducting dimensionality assessment in multidimensional models. Applied Psychological Measurement, 36, 659–669.
Article
Google Scholar
Sympson, J. B. (1978). A model for testing with multidimensional items. In D. J. Weiss (Ed.), Proceedings of the 1977 computerized adaptive testing conference (pp. 82–98).
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58, 267–288.
Google Scholar
Way, W. D., Ansley, T. N., & Forsyth, R. A. (1988). The comparative effects of compensatory and noncompensatory two-dimensional data on unidimensional IRT estimates. Applied Psychological Measurement, 12, 239–252.
Article
Google Scholar