Abstract
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.
This is a preview of subscription content, access via your institution.







References
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.
Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83, 557–574.
Bauer, D. J., & Shanahan, M. J. (2007). Modeling complex interactions: Person-centered and variable-centered approaches. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), Modeling contextual effects in longitudinal studies (pp. 255–283). London: Rouledge.
Belloc, N. B., Breslow, L., & Hochstim, J. R. (1971). Measurement of physical health in a general population survey. American Journal of Epidemiology, 93, 328–336.
Bergeman, C. S., & Deboeck, P. R. (2014). Trait stress resistance and dynamic stress dissipation on health and well-being: The reservoir model. Research in Human Development, 11, 108–125.
Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and psychopathology, 9, 291–319.
Bernstein, A., Stickle, T. R., Zvolensky, M. J., Taylor, S., Abramowitz, J., & Stewart, S. (2010). Dimensional, categorical, or dimensional-categories: Testing the latent structure of anxiety sensitivity among adults using factor-mixture modeling. Behavior Therapy, 41, 515–529.
Braeckman, U., Van Colen, C., Soetaert, K., Vincx, M., & Vanaverbeke, J. (2011). Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Marine Ecology Progress Series, 422, 179–191.
Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage University Paper Series on Quantitative Research Methods, 54, 1–79.
Breslau, N., Reboussin, B. A., Anthony, J. C., & Storr, C. L. (2005). The structure of posttraumatic stress disorder. Archives of General Psychiatry, 62, 1343–1351.
Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechanical turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6, 3–5.
Carmody, R. N., Gerber, G. K., Luevano, J. M., Gatti, D. M., Somes, L., Svenson, K. L., et al. (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe, 17, 72–84.
Cassady, J. C., & Finch, W. H. (2015). Using factor mixture modeling to identify dimensions of cognitive test anxiety. Learning and Individual Differences, 41, 14–20.
Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26, 404–413.
Costa, P. T., & McCrae, R. R. (1992). Professional manual: Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI). Odessa FL Psychological Assessment Resources, 3, 101.
Davies, R. B. (1980). The distribution of a linear combination of chi-square random variables. Journal of the Royal Statistical Society, 29, 323–333.
Duchesne, P., & de Micheaux, P. L. (2010). Computing the distribution of quadratic forms: Further comparisons between the Liu–Tang–Zhang approximation and exact methods. Computational Statistics and Data Analysis, 54, 858–862.
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca Raton: CRC Press.
Etezadi-Amoli, J., & McDonald, R. P. (1983). A second generation nonlinear factor analysis. Psychometrika, 48, 315–342.
Friedman, J. H., & Meulman, J. J. (2004). Clustering objects on subsets of attributes. Journal of the Royal Statistical Society, 66, 815–839.
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.
Kelly, B. J., Gross, R., Bittinger, K., Sherrill-Mix, S., Lewis, J. D., Collman, R. G., et al. (2015). Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics, 31, 2461–2468.
Kiers, H. A. L., Vicari, D., & Vichi, M. (2005). Simultaneous classification and multidimensional scaling with external information. Psychometrika, 70, 433–460.
Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.
Kruskal, J. B. (1964b). Nonmetric multidimensional scalling: A numerical method. Psychometrika, 29, 115–129.
Kubarych, T. S., Aggen, S. H., Kendler, K. S., Torgersen, S., Reichborn-Kjennerud, T., & Neale, M. C. (2010). Measurement non-invariance of DSM-IV narcissistic personality disorder criteria across age and sex in a population-based sample of Norwegian twins. International Journal of Methods in Psychiatric Research, 19, 156–166.
Lubke, G. H., & McArtor, D. B. (2014). Multivariate genetic analyses in heterogeneous populations. Behavior Genetics, 44, 232–239.
Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological methods, 10, 21–39.
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology, 82, 290–297.
McDonald, R. P. (1962). A general approach to nonlinear factor analysis. Psychometrika, 27, 397–415.
Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika, 57, 539–565.
Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24, 882–891.
Osborne, D., & Weiner, B. (2015). A latent profile analysis of attributions for poverty: Identifying response patterns underlying people’s willingness to help the poor. Personality and Individual Differences, 85, 149–154.
R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Core Team.
Salem, R. M., O’Connor, D. T., & Schork, N. J. (2010). Curve-based multivariate distance matrix regression analysis: Application to genetic association analyses involving repeated measures. Physiological Genomics, 42, 236–247.
Satterthwaite, T. D., Vandekar, S. N., Wolf, D. H., Bassett, D. S., Ruparel, K., Shehzad, Z., et al. (2015). Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Molecular Psychiatry, 20, 1–8.
Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., et al. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. NeuroImage, 93, 74–94.
Torgerson, W. S. (1952). Multidimensional scaling: I Theory and method. Psychometrika, 17, 401–419.
Yalcin, I., & Amemiya, Y. (2001). Nonlinear factor analysis as a statistical method. Statistical Science, 16, 275–294.
Zapala, M. A., & Schork, N. J. (2012). Statistical properties of multivariate distance matrix regression for high-dimensional data analysis. Frontiers in Genetics, 3, 1–10.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McArtor, D.B., Lubke, G.H. & Bergeman, C.S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077 (2017). https://doi.org/10.1007/s11336-016-9527-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11336-016-9527-8
Keywords
- effect size
- distances
- MDMR
- MDS
- multivariate outcome
- null distribution
- person-centered
- permutation