Abstract
The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.
Similar content being viewed by others
References
Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE, 24(1), 58–64.
Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. Sociological Methodology, 16, 187–212. Retrieved November 26, 2014, from http://www.jstor.org/stable/270923.
Bates, T. C. (2013). umx: A help package for structural equation modeling in openmx [Computer software manual], Edinburgh, UK. Retrieved November 26, 2014, from http://github.com/tbates/umx/ (version 0.6).
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.
Boker, S., McArdle, J. J., & Neale, M. C. (2002). An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174–194.
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2009). OpenMx: Multipurpose software for statistical modeling, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2012). OpenMx: Multipurpose software for statistical modeling, version 1.2, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.
Browne, M., & Zhang, G. (2010). DyFA 3.00 user guide. Retrieved December 2, 2014, from http://faculty.psy.ohio-state.edu/browne/software.php.
Cheung, M. W.-L. (2014). metaSEM: Meta-analysis using structural equation modeling [Computer software manual]. Retrieved November 26, 2014, from OpenMx 2.0 28 http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/ (R package version 0.9-0).
Chow, S.-M., Grimm, K. J., Filteau, G., Dolan, C. V., & McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463–502.
Dolan, C. V. (2005). MKFM6: Multi-group, multi-subject stationary time series modeling based on the Kalman filter. Retrieved November 27, 2014, from http://tinyurl.com/MKFM6Dolan.
Ghalanos, A., & Theussl, S. (2012). RSOLNP: General non-linear optimization using augmented lagrange multiplier method [Computer software manual]. (R package version 1.14.).
Gill, P. E., Murray, W., Saunders, M. A., & Wright, M. H. (1986). User’s guide for NPSOL (version 4.0): A FORTRAN package for nonlinear programming (Technical Report), Department of Operations Research, Stanford University.
Gu, F., Preacher, K. J., Wu, W., & Yung, Y.-F. (2014). A computationally efficient state space approach to estimating multilevel regression models and multilevel confirmatory factor models. Multivariate Behavioral Research, 49(2), 119–129.
Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamical systems. Mahwah, NJ: Lawrence Erlbaum Associates.
Henderson, R. L. (1995). Job scheduling under the Portable Batch System. In D. G. Feitelson & L. Rudolph (Eds.), Job scheduling strategies for parallel processing (pp. 279–294). Berlin: Springer.
Hunter, M. D. (2012, July 9–12). The addition of LISREL specification to OpenMx. Presented at the 2012 Annual International Meeting of the Psychometric Society, Lincoln, NE.
Hunter, M. D. (2014, May 22–25). Extended structural equations and state space models OpenMx 2.0.29 when data are missing at random. Presented at the 2014 Annual Meeting of the Association for Psychological Science, San Francisco, CA.
Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.
Johnson, S. G. (2010). The NLopt nonlinear-optimization package. R package. Retrieved November 26, 2014, from http://ab-initio.mit.edu/nlopt.
Jöreskog, K. G., & Sörbom, D. (1999). Lisrel 8: User’s reference guide. Lincolnwood, IL: Scientific Software International.
Jöreskog, K. G., & Van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. ETS Research Bulletin Series. doi:10.1002/j.2333-8504.1972.tb00827.x.
King, L. A., King, D. W., McArdle, J. J., Saxe, G. N., Doron-LaMarca, S., & Orazem, R. J. (2006). Latent difference score approach to longitudinal trauma research. Journal of Traumatic Stress, 19, 771–785.
Koopman, S. J., Shephard, N., & Doornik, J. A. (1999). Statistical algorithms for models in state space using SsfPack 2.2. Econometrics Journal, 2(1), 113–166.
Maruyama, G. M. (1998). Basics of structural equation modeling. Thousand Oaks, CA: Sage.
MATLAB. (2014). Version 8.3 (R2014a). Natick, MA: The MathWorks Inc.
McArdle, J. J., & Boker, S. (1990). Rampath. Hillsdale, NJ: Lawrence Erlbaum.
McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 137–176). Washington, DC: American Psychological Association.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, VCU.
Petris, G. (2010). A R package for dynamic linear models. Journal of Statistical Software, 36(12), 1–16.
Petris, G., & Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41(4), 1–25.
Pritikin, J. N., Hunter, M. D., & Boker, S. (in press). Modular open-source software for Item Factor Analysis. Educational and Psychological Measurement.
R Core Team. (2014). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved November 26, 2014, from http://www.R-project.org/.
Roweis, S., & Ghahramani, Z. (1998). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–345.
Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., & Mansmann, U. (2009). State-of-the-art in parallel computing with R. Journal of Statistical Software, 47(1).
The Numerical Algorithms Group (NAG). (n.d.). The NAG Library. Retrieved November 26, 2014, from http://www.nag.com. Oxford, UK.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.
von Oertzen, T., Brandmaier, A., & Tsang, S. (in press). Structural equation modeling with \(\omega \)nyx. Structural Equation Modeling: A Multidisciplinary Journal.
Whaley, R. C., & Dongarra, J. J. (1998). Automatically tuned linear algebra software. In: Proceedings of the 1998 ACM/IEEE conference on supercomputing (pp. 1–27).
Ye, Y. (1987). Interior algorithms for linear, quadratic, and linearly constrained non-linear programming (Unpublished doctoral dissertation). Department of ESS, Stanford University.
Acknowledgments
The authors gratefully acknowledge funding from the National Institutes of Health, specifically Grants R01-DA022989 (PI Boker), R37-DA018673 and R25-DA026119 (PI Neale). Thanks are also due to a large group of beta-testers, including but not limited to: Mike W.-L. Cheung (2014), Charles Driver, Dorothy Bishop, Greg Carey, Pascal Deboeck, Emilio Ferrer, Christopher Hertzog, Kevin Grimm, Ken Kelley, Matthew Keller, Jean-Philippe Laurenceau, Gitta Lubke, John J. McArdle, Sam McQuillin, Sarah Medland, William Revelle, Michael Scharkow, James Steiger, Melissa Sturge-Apple, and Theodore Walls.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neale, M.C., Hunter, M.D., Pritikin, J.N. et al. OpenMx 2.0: Extended Structural Equation and Statistical Modeling. Psychometrika 81, 535–549 (2016). https://doi.org/10.1007/s11336-014-9435-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11336-014-9435-8