Skip to main content
Log in

OpenMx 2.0: Extended Structural Equation and Statistical Modeling

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE, 24(1), 58–64.

    Article  Google Scholar 

  • Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. Sociological Methodology, 16, 187–212. Retrieved November 26, 2014, from http://www.jstor.org/stable/270923.

  • Bates, T. C. (2013). umx: A help package for structural equation modeling in openmx [Computer software manual], Edinburgh, UK. Retrieved November 26, 2014, from http://github.com/tbates/umx/ (version 0.6).

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

    Article  PubMed  Google Scholar 

  • Boker, S., McArdle, J. J., & Neale, M. C. (2002). An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174–194.

    Article  Google Scholar 

  • Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2009). OpenMx: Multipurpose software for statistical modeling, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.

  • Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2012). OpenMx: Multipurpose software for statistical modeling, version 1.2, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.

  • Browne, M., & Zhang, G. (2010). DyFA 3.00 user guide. Retrieved December 2, 2014, from http://faculty.psy.ohio-state.edu/browne/software.php.

  • Cheung, M. W.-L. (2014). metaSEM: Meta-analysis using structural equation modeling [Computer software manual]. Retrieved November 26, 2014, from OpenMx 2.0 28 http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/ (R package version 0.9-0).

  • Chow, S.-M., Grimm, K. J., Filteau, G., Dolan, C. V., & McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463–502.

    Article  PubMed  Google Scholar 

  • Dolan, C. V. (2005). MKFM6: Multi-group, multi-subject stationary time series modeling based on the Kalman filter. Retrieved November 27, 2014, from http://tinyurl.com/MKFM6Dolan.

  • Ghalanos, A., & Theussl, S. (2012). RSOLNP: General non-linear optimization using augmented lagrange multiplier method [Computer software manual]. (R package version 1.14.).

  • Gill, P. E., Murray, W., Saunders, M. A., & Wright, M. H. (1986). User’s guide for NPSOL (version 4.0): A FORTRAN package for nonlinear programming (Technical Report), Department of Operations Research, Stanford University.

  • Gu, F., Preacher, K. J., Wu, W., & Yung, Y.-F. (2014). A computationally efficient state space approach to estimating multilevel regression models and multilevel confirmatory factor models. Multivariate Behavioral Research, 49(2), 119–129.

    Article  PubMed  Google Scholar 

  • Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamical systems. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Henderson, R. L. (1995). Job scheduling under the Portable Batch System. In D. G. Feitelson & L. Rudolph (Eds.), Job scheduling strategies for parallel processing (pp. 279–294). Berlin: Springer.

    Chapter  Google Scholar 

  • Hunter, M. D. (2012, July 9–12). The addition of LISREL specification to OpenMx. Presented at the 2012 Annual International Meeting of the Psychometric Society, Lincoln, NE.

  • Hunter, M. D. (2014, May 22–25). Extended structural equations and state space models OpenMx 2.0.29 when data are missing at random. Presented at the 2014 Annual Meeting of the Association for Psychological Science, San Francisco, CA.

  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.

    Google Scholar 

  • Johnson, S. G. (2010). The NLopt nonlinear-optimization package. R package. Retrieved November 26, 2014, from http://ab-initio.mit.edu/nlopt.

  • Jöreskog, K. G., & Sörbom, D. (1999). Lisrel 8: User’s reference guide. Lincolnwood, IL: Scientific Software International.

  • Jöreskog, K. G., & Van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. ETS Research Bulletin Series. doi:10.1002/j.2333-8504.1972.tb00827.x.

  • King, L. A., King, D. W., McArdle, J. J., Saxe, G. N., Doron-LaMarca, S., & Orazem, R. J. (2006). Latent difference score approach to longitudinal trauma research. Journal of Traumatic Stress, 19, 771–785.

    Article  PubMed  Google Scholar 

  • Koopman, S. J., Shephard, N., & Doornik, J. A. (1999). Statistical algorithms for models in state space using SsfPack 2.2. Econometrics Journal, 2(1), 113–166.

    Article  Google Scholar 

  • Maruyama, G. M. (1998). Basics of structural equation modeling. Thousand Oaks, CA: Sage.

    Book  Google Scholar 

  • MATLAB. (2014). Version 8.3 (R2014a). Natick, MA: The MathWorks Inc.

  • McArdle, J. J., & Boker, S. (1990). Rampath. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 137–176). Washington, DC: American Psychological Association.

    Google Scholar 

  • McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251.

  • Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, VCU.

  • Petris, G. (2010). A R package for dynamic linear models. Journal of Statistical Software, 36(12), 1–16.

    Article  Google Scholar 

  • Petris, G., & Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41(4), 1–25.

    Article  Google Scholar 

  • Pritikin, J. N., Hunter, M. D., & Boker, S. (in press). Modular open-source software for Item Factor Analysis. Educational and Psychological Measurement.

  • R Core Team. (2014). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved November 26, 2014, from http://www.R-project.org/.

  • Roweis, S., & Ghahramani, Z. (1998). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–345.

    Article  Google Scholar 

  • Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., & Mansmann, U. (2009). State-of-the-art in parallel computing with R. Journal of Statistical Software, 47(1).

  • The Numerical Algorithms Group (NAG). (n.d.). The NAG Library. Retrieved November 26, 2014, from http://www.nag.com. Oxford, UK.

  • Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.

    Article  Google Scholar 

  • von Oertzen, T., Brandmaier, A., & Tsang, S. (in press). Structural equation modeling with \(\omega \)nyx. Structural Equation Modeling: A Multidisciplinary Journal.

  • Whaley, R. C., & Dongarra, J. J. (1998). Automatically tuned linear algebra software. In: Proceedings of the 1998 ACM/IEEE conference on supercomputing (pp. 1–27).

  • Ye, Y. (1987). Interior algorithms for linear, quadratic, and linearly constrained non-linear programming (Unpublished doctoral dissertation). Department of ESS, Stanford University.

Download references

Acknowledgments

The authors gratefully acknowledge funding from the National Institutes of Health, specifically Grants R01-DA022989 (PI Boker), R37-DA018673 and R25-DA026119 (PI Neale). Thanks are also due to a large group of beta-testers, including but not limited to: Mike W.-L. Cheung (2014), Charles Driver, Dorothy Bishop, Greg Carey, Pascal Deboeck, Emilio Ferrer, Christopher Hertzog, Kevin Grimm, Ken Kelley, Matthew Keller, Jean-Philippe Laurenceau, Gitta Lubke, John J. McArdle, Sam McQuillin, Sarah Medland, William Revelle, Michael Scharkow, James Steiger, Melissa Sturge-Apple, and Theodore Walls.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Neale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neale, M.C., Hunter, M.D., Pritikin, J.N. et al. OpenMx 2.0: Extended Structural Equation and Statistical Modeling. Psychometrika 81, 535–549 (2016). https://doi.org/10.1007/s11336-014-9435-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-014-9435-8

Keywords

Navigation