, Volume 81, Issue 2, pp 535–549 | Cite as

OpenMx 2.0: Extended Structural Equation and Statistical Modeling

  • Michael C. Neale
  • Michael D. Hunter
  • Joshua N. Pritikin
  • Mahsa Zahery
  • Timothy R. Brick
  • Robert M. Kirkpatrick
  • Ryne Estabrook
  • Timothy C. Bates
  • Hermine H. Maes
  • Steven M. Boker


The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.


structural equation modeling path analysis item factor analysis state space modeling mixture distribution  latent class analysis optimization big data time series behavior genetics substance use data analysis full information maximum likelihood ordinal data 



The authors gratefully acknowledge funding from the National Institutes of Health, specifically Grants R01-DA022989 (PI Boker), R37-DA018673 and R25-DA026119 (PI Neale). Thanks are also due to a large group of beta-testers, including but not limited to: Mike W.-L. Cheung (2014), Charles Driver, Dorothy Bishop, Greg Carey, Pascal Deboeck, Emilio Ferrer, Christopher Hertzog, Kevin Grimm, Ken Kelley, Matthew Keller, Jean-Philippe Laurenceau, Gitta Lubke, John J. McArdle, Sam McQuillin, Sarah Medland, William Revelle, Michael Scharkow, James Steiger, Melissa Sturge-Apple, and Theodore Walls.


  1. Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE, 24(1), 58–64.CrossRefGoogle Scholar
  2. Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. Sociological Methodology, 16, 187–212. Retrieved November 26, 2014, from
  3. Bates, T. C. (2013). umx: A help package for structural equation modeling in openmx [Computer software manual], Edinburgh, UK. Retrieved November 26, 2014, from (version 0.6).
  4. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.CrossRefPubMedGoogle Scholar
  5. Boker, S., McArdle, J. J., & Neale, M. C. (2002). An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174–194.CrossRefGoogle Scholar
  6. Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2009). OpenMx: Multipurpose software for statistical modeling, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from
  7. Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2012). OpenMx: Multipurpose software for statistical modeling, version 1.2, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from
  8. Browne, M., & Zhang, G. (2010). DyFA 3.00 user guide. Retrieved December 2, 2014, from
  9. Cheung, M. W.-L. (2014). metaSEM: Meta-analysis using structural equation modeling [Computer software manual]. Retrieved November 26, 2014, from OpenMx 2.0 28 (R package version 0.9-0).
  10. Chow, S.-M., Grimm, K. J., Filteau, G., Dolan, C. V., & McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463–502.CrossRefPubMedGoogle Scholar
  11. Dolan, C. V. (2005). MKFM6: Multi-group, multi-subject stationary time series modeling based on the Kalman filter. Retrieved November 27, 2014, from
  12. Ghalanos, A., & Theussl, S. (2012). RSOLNP: General non-linear optimization using augmented lagrange multiplier method [Computer software manual]. (R package version 1.14.).Google Scholar
  13. Gill, P. E., Murray, W., Saunders, M. A., & Wright, M. H. (1986). User’s guide for NPSOL (version 4.0): A FORTRAN package for nonlinear programming (Technical Report), Department of Operations Research, Stanford University.Google Scholar
  14. Gu, F., Preacher, K. J., Wu, W., & Yung, Y.-F. (2014). A computationally efficient state space approach to estimating multilevel regression models and multilevel confirmatory factor models. Multivariate Behavioral Research, 49(2), 119–129.CrossRefPubMedGoogle Scholar
  15. Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamical systems. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  16. Henderson, R. L. (1995). Job scheduling under the Portable Batch System. In D. G. Feitelson & L. Rudolph (Eds.), Job scheduling strategies for parallel processing (pp. 279–294). Berlin: Springer.CrossRefGoogle Scholar
  17. Hunter, M. D. (2012, July 9–12). The addition of LISREL specification to OpenMx. Presented at the 2012 Annual International Meeting of the Psychometric Society, Lincoln, NE.Google Scholar
  18. Hunter, M. D. (2014, May 22–25). Extended structural equations and state space models OpenMx 2.0.29 when data are missing at random. Presented at the 2014 Annual Meeting of the Association for Psychological Science, San Francisco, CA.Google Scholar
  19. Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.Google Scholar
  20. Johnson, S. G. (2010). The NLopt nonlinear-optimization package. R package. Retrieved November 26, 2014, from
  21. Jöreskog, K. G., & Sörbom, D. (1999). Lisrel 8: User’s reference guide. Lincolnwood, IL: Scientific Software International.Google Scholar
  22. Jöreskog, K. G., & Van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. ETS Research Bulletin Series. doi: 10.1002/j.2333-8504.1972.tb00827.x.
  23. King, L. A., King, D. W., McArdle, J. J., Saxe, G. N., Doron-LaMarca, S., & Orazem, R. J. (2006). Latent difference score approach to longitudinal trauma research. Journal of Traumatic Stress, 19, 771–785.CrossRefPubMedGoogle Scholar
  24. Koopman, S. J., Shephard, N., & Doornik, J. A. (1999). Statistical algorithms for models in state space using SsfPack 2.2. Econometrics Journal, 2(1), 113–166.CrossRefGoogle Scholar
  25. Maruyama, G. M. (1998). Basics of structural equation modeling. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  26. MATLAB. (2014). Version 8.3 (R2014a). Natick, MA: The MathWorks Inc.Google Scholar
  27. McArdle, J. J., & Boker, S. (1990). Rampath. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  28. McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 137–176). Washington, DC: American Psychological Association.Google Scholar
  29. McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251.Google Scholar
  30. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, VCU.Google Scholar
  31. Petris, G. (2010). A R package for dynamic linear models. Journal of Statistical Software, 36(12), 1–16.CrossRefGoogle Scholar
  32. Petris, G., & Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41(4), 1–25.CrossRefGoogle Scholar
  33. Pritikin, J. N., Hunter, M. D., & Boker, S. (in press). Modular open-source software for Item Factor Analysis. Educational and Psychological Measurement.Google Scholar
  34. R Core Team. (2014). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved November 26, 2014, from
  35. Roweis, S., & Ghahramani, Z. (1998). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–345.CrossRefGoogle Scholar
  36. Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., & Mansmann, U. (2009). State-of-the-art in parallel computing with R. Journal of Statistical Software, 47(1).Google Scholar
  37. The Numerical Algorithms Group (NAG). (n.d.). The NAG Library. Retrieved November 26, 2014, from Oxford, UK.
  38. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.CrossRefGoogle Scholar
  39. von Oertzen, T., Brandmaier, A., & Tsang, S. (in press). Structural equation modeling with \(\omega \)nyx. Structural Equation Modeling: A Multidisciplinary Journal.Google Scholar
  40. Whaley, R. C., & Dongarra, J. J. (1998). Automatically tuned linear algebra software. In: Proceedings of the 1998 ACM/IEEE conference on supercomputing (pp. 1–27).Google Scholar
  41. Ye, Y. (1987). Interior algorithms for linear, quadratic, and linearly constrained non-linear programming (Unpublished doctoral dissertation). Department of ESS, Stanford University.Google Scholar

Copyright information

© The Psychometric Society 2015

Authors and Affiliations

  • Michael C. Neale
    • 1
  • Michael D. Hunter
    • 2
  • Joshua N. Pritikin
    • 3
  • Mahsa Zahery
    • 4
  • Timothy R. Brick
    • 5
  • Robert M. Kirkpatrick
    • 1
  • Ryne Estabrook
    • 6
  • Timothy C. Bates
    • 7
  • Hermine H. Maes
    • 1
  • Steven M. Boker
    • 3
  1. 1.Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of PsychologyUniversity of OklahomaNormanUSA
  3. 3.Department of PsychologyUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Computer ScienceVirginia Commonwealth UniversityRichmondUSA
  5. 5.Department of Human Development and Family StudiesPennsylvania State UniversityState CollegeUSA
  6. 6.Department of Medical Social SciencesNorthwestern UniversityEvanstonUSA
  7. 7.Department of PsychologyUniversity of EdinburghEdinburghUSA

Personalised recommendations