Skip to main content

Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary

Abstract

This commentary addresses the modeling and final analytical path taken, as well as the terminology used, in the paper “Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies” by Templin and Bradshaw (Psychometrika, doi:10.1007/s11336-013-9362-0, 2013). It raises several issues concerning use of cognitive diagnostic models that either assume attribute hierarchies or assume a certain form of attribute interactions. The issues raised are illustrated with examples, and references are provided for further examination.

This is a preview of subscription content, access via your institution.

References

  • DeCarlo, L.T. (2011). On the analysis of fraction subtraction data: the DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.

    Article  Google Scholar 

  • de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196.

    Google Scholar 

  • Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika, 53, 553–562.

    Article  Google Scholar 

  • Formann, A.K. (1989). Constrained latent class models: some further applications. British Journal of Mathematical & Statistical Psychology, 42, 37–54.

    Article  Google Scholar 

  • Guttman, L. (1950). The basis for scalogram analysis. In S.A. Stouffer et al. (Eds.), The American soldier: Vol. 4. Measurement and prediction. New York: Wiley.

    Google Scholar 

  • Haberman, S.J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815–841.

    Article  Google Scholar 

  • Haberman, S.J., & von Davier, M. (2006). Some notes on models for cognitively based attribute diagnosis. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Haberman, S.J., von Davier, M., & Lee, Y. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions (Research Report 08-45). Princeton, NJ: Educational Testing Service.

  • Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Hermelin, M., & Nyberg, K. (2012). Multidimensional linear distinguishing attacks and Boolean functions. Cryptography and Communications, 4(1), 47–64.

    Article  Google Scholar 

  • Hox, J. (2002). Multilevel analysis: techniques and applications. Mahwah: Erlbaum.

    Google Scholar 

  • Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.

    Article  Google Scholar 

  • Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage.

    Google Scholar 

  • Lazarsfeld, P.F. (1950). The logical and mathematical foundations of latent structure analysis. In S.A. Stouffer et al. (Eds.), Measurement and prediction (pp. 362–472). Princeton: Princeton University Press.

    Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.

    Google Scholar 

  • Leighton, J.P. & Gierl, M.J. (Eds.) (2007). Cognitive diagnostic assessment for education. Theory and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lindsay, B., Clogg, C.C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.

    Article  Google Scholar 

  • Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.

    Article  Google Scholar 

  • Raudenbush, S.W., & Bryk, A.S. (2001). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Rojas, G., & de la Torre, J. (2012). Choosing between general and specific cognitive diagnosis models when the sample size is small. Unpublished manuscript, Rutgers University, New Brunswick, NJ.

  • Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic measurement: theory, methods, and applications. New York: Guilford.

    Google Scholar 

  • Schwarz, G.E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Templin, J.L., & Bradshaw, L. (2013). Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies. Psychometrika. doi:10.1007/s11336-013-9362-0.

    Google Scholar 

  • Tsai, S.C. (1996). Lower bounds on representing Boolean functions as polynomials in Z m . SIAM Journal on Discrete Mathematics, 9, 96–101.

    Article  Google Scholar 

  • van der Linden, W. (2012). On compensation in multidimensional response modeling. Psychometrika, 77(1), 21–30.

    Article  Google Scholar 

  • Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213–239.

    Article  Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report 05-16). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2007). Hierarchical general diagnostic models (Research Report 07-19). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7(1), 67–74.

    Google Scholar 

  • von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28. Retrieved from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf.

    Google Scholar 

  • von Davier, M. (2011). Equivalency of the DINA model and a constrained general diagnostic model (Research Report 11-37). Princeton, NJ: Educational Testing Service. Retrieved from http://www.ets.org/Media/Research/pdf/RR-11-37.pdf.

  • von Davier, M. (2013). The DINA model as a constrained general diagnostic model—two variants of a model equivalency. British Journal of Mathematical & Statistical Psychology. doi:10.1111/bmsp.12003.

    Google Scholar 

  • von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models—foundations, recent developments and applications (pp. 371–379). New York: Springer.

    Google Scholar 

  • von Davier, M., Xu, X., & Yamamoto, K. (2011, July). Why diagnostic models are latent class models—or the other way around? Paper presented at the many faces of latent class analysis symposium, 75th international meeting of the Psychometric Society, Hong Kong, China.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias von Davier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Davier, M., Haberman, S.J. Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary. Psychometrika 79, 340–346 (2014). https://doi.org/10.1007/s11336-013-9363-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9363-z

Key words

  • latent structure model
  • latent class analysis
  • diagnostic models
  • Guttman scaling
  • hierarchical models