DeCarlo, L.T. (2011). On the analysis of fraction subtraction data: the DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.
Article
Google Scholar
de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196.
Google Scholar
Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika, 53, 553–562.
Article
Google Scholar
Formann, A.K. (1989). Constrained latent class models: some further applications. British Journal of Mathematical & Statistical Psychology, 42, 37–54.
Article
Google Scholar
Guttman, L. (1950). The basis for scalogram analysis. In S.A. Stouffer et al. (Eds.), The American soldier: Vol. 4. Measurement and prediction. New York: Wiley.
Google Scholar
Haberman, S.J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815–841.
Article
Google Scholar
Haberman, S.J., & von Davier, M. (2006). Some notes on models for cognitively based attribute diagnosis. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier.
Chapter
Google Scholar
Haberman, S.J., von Davier, M., & Lee, Y. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions (Research Report 08-45). Princeton, NJ: Educational Testing Service.
Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191–210.
Article
Google Scholar
Hermelin, M., & Nyberg, K. (2012). Multidimensional linear distinguishing attacks and Boolean functions. Cryptography and Communications, 4(1), 47–64.
Article
Google Scholar
Hox, J. (2002). Multilevel analysis: techniques and applications. Mahwah: Erlbaum.
Google Scholar
Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.
Article
Google Scholar
Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage.
Google Scholar
Lazarsfeld, P.F. (1950). The logical and mathematical foundations of latent structure analysis. In S.A. Stouffer et al. (Eds.), Measurement and prediction (pp. 362–472). Princeton: Princeton University Press.
Google Scholar
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.
Google Scholar
Leighton, J.P. & Gierl, M.J. (Eds.) (2007). Cognitive diagnostic assessment for education. Theory and applications. Cambridge: Cambridge University Press.
Google Scholar
Lindsay, B., Clogg, C.C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.
Article
Google Scholar
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.
Article
Google Scholar
Raudenbush, S.W., & Bryk, A.S. (2001). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks: Sage.
Google Scholar
Rojas, G., & de la Torre, J. (2012). Choosing between general and specific cognitive diagnosis models when the sample size is small. Unpublished manuscript, Rutgers University, New Brunswick, NJ.
Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic measurement: theory, methods, and applications. New York: Guilford.
Google Scholar
Schwarz, G.E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Article
Google Scholar
Templin, J.L., & Bradshaw, L. (2013). Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies. Psychometrika. doi:10.1007/s11336-013-9362-0.
Google Scholar
Tsai, S.C. (1996). Lower bounds on representing Boolean functions as polynomials in Z
m
. SIAM Journal on Discrete Mathematics, 9, 96–101.
Article
Google Scholar
van der Linden, W. (2012). On compensation in multidimensional response modeling. Psychometrika, 77(1), 21–30.
Article
Google Scholar
Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213–239.
Article
Google Scholar
von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report 05-16). Princeton, NJ: Educational Testing Service.
von Davier, M. (2007). Hierarchical general diagnostic models (Research Report 07-19). Princeton, NJ: Educational Testing Service.
von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7(1), 67–74.
Google Scholar
von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28. Retrieved from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf.
Google Scholar
von Davier, M. (2011). Equivalency of the DINA model and a constrained general diagnostic model (Research Report 11-37). Princeton, NJ: Educational Testing Service. Retrieved from http://www.ets.org/Media/Research/pdf/RR-11-37.pdf.
von Davier, M. (2013). The DINA model as a constrained general diagnostic model—two variants of a model equivalency. British Journal of Mathematical & Statistical Psychology. doi:10.1111/bmsp.12003.
Google Scholar
von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models—foundations, recent developments and applications (pp. 371–379). New York: Springer.
Google Scholar
von Davier, M., Xu, X., & Yamamoto, K. (2011, July). Why diagnostic models are latent class models—or the other way around? Paper presented at the many faces of latent class analysis symposium, 75th international meeting of the Psychometric Society, Hong Kong, China.