Psychometrika

, Volume 79, Issue 1, pp 20–50 | Cite as

Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models

  • Kenneth A. Bollen
  • Stanislav Kolenikov
  • Shawn Bauldry
Article

Abstract

The common maximum likelihood (ML) estimator for structural equation models (SEMs) has optimal asymptotic properties under ideal conditions (e.g., correct structure, no excess kurtosis, etc.) that are rarely met in practice. This paper proposes model-implied instrumental variable – generalized method of moments (MIIV-GMM) estimators for latent variable SEMs that are more robust than ML to violations of both the model structure and distributional assumptions. Under less demanding assumptions, the MIIV-GMM estimators are consistent, asymptotically unbiased, asymptotically normal, and have an asymptotic covariance matrix. They are “distribution-free,” robust to heteroscedasticity, and have overidentification goodness-of-fit J-tests with asymptotic chi-square distributions. In addition, MIIV-GMM estimators are “scalable” in that they can estimate and test the full model or any subset of equations, and hence allow better pinpointing of those parts of the model that fit and do not fit the data. An empirical example illustrates MIIV-GMM estimators. Two simulation studies explore their finite sample properties and find that they perform well across a range of sample sizes.

Key words

structural equation models latent variables generalized method of moments instrumental variables factor analysis 

References

  1. Anderson, J.C., & Gerbing, D. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173. CrossRefGoogle Scholar
  2. Anderson, T.W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. The Annals of Statistics, 16, 759–771. CrossRefGoogle Scholar
  3. Angrist, J.D., & Pischke, J. (2009). Mostly harmless econometrics: an empiricist’s companion. Princeton: Princeton University Press. Google Scholar
  4. Bauldry, S. (forthcoming). miivfind: a program for identifying model-implied instrumental variables (MIIVs) for structural equation models in Stata. Stata Journal. Google Scholar
  5. Bentler, P.M. (1982). Confirmatory factor analysis via noniterative estimation: a fast, inexpensive method. Journal of Marketing Research, 19, 417–424. CrossRefGoogle Scholar
  6. Bentler, P.M., & Yuan, K. (1999). Structural equation modeling with small samples: test statistics. Multivariate Behavioral Research, 34, 181–197. CrossRefGoogle Scholar
  7. Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley. Google Scholar
  8. Bollen, K.A. (1996a). An alternative Two Stage Least Squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109–121. CrossRefGoogle Scholar
  9. Bollen, K.A. (1996b). A limited information estimator for LISREL models with and without heteroscedasticity. In G.A. Marcoulides & R.E. Schumacker (Eds.), Advanced structural equation modeling (pp. 227–241). Mahwah: Erlbaum. Google Scholar
  10. Bollen, K.A. (2001). Two-stage least squares and latent variable models: simultaneous estimation and robustness to misspecifications. In: R. Cudeck, S.D. Toit, & D. Sörbom (Eds.), Structural equation modeling: present and future, a festschrift in honor of Karl Jöreskog (pp. 119–138). Lincolnwood: Scientific Software International. Google Scholar
  11. Bollen, K.A. (2012). Instrumental variables in sociology and the social sciences. Annual Review of Sociology, 38, 37–72. CrossRefGoogle Scholar
  12. Bollen, K.A., & Bauer, D.J. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods & Research, 32, 425–452. CrossRefGoogle Scholar
  13. Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. (2007). Latent variable models under misspecification: two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36, 48–86. CrossRefGoogle Scholar
  14. Bollen, K.A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S. Morgan (Ed.), Handbook of causal analysis for social research, New York: Springer. Google Scholar
  15. Bollen, K.A., & Stine, R. (1990). Direct and indirect effects: classical and bootstrap estimates of variability. Sociological Methodology, 20, 115–140. CrossRefGoogle Scholar
  16. Bollen, K.A., & Stine, R. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21, 205–229. CrossRefGoogle Scholar
  17. Boomsma, A., & Hoogland, J.J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S.D. Toit, & D. Sörbom (Eds.), Structural equation modeling: present and future, a festschrift in honor of Karl Jöreskog (pp. 139–168). Lincolnwood: Scientific Software International. Google Scholar
  18. Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of the covariance structures. British Journal of Mathematical & Statistical Psychology, 37, 62–83. CrossRefGoogle Scholar
  19. Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.A. Bollen & J.S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park: Sage. Google Scholar
  20. Chausse, P. (2012). gmm: generalized method of moments and generalized empirical likelihood (R package). http://cran.r-project.org/web/packages/gmm/index.html.
  21. Cragg, J.G. (1968). Some effects of incorrect specification on the small sample properties of several simultaneous equation estimators. International Economic Review, 9, 63–86. CrossRefGoogle Scholar
  22. Davidson, R., & MacKinnon, J.G. (1993). Estimation and inference in econometrics. New York: Oxford University Press. Google Scholar
  23. Foster, E.M. (1997). Instrumental variables for logistic regression: an illustration. Social Science Research, 26, 487–504. CrossRefGoogle Scholar
  24. Glanville, J.L., & Paxton, P. (2007). How do we learn to trust? A confirmatory tetrad analysis of the sources of generalized trust. Social Psychology Quarterly, 70, 230–242. CrossRefGoogle Scholar
  25. Godambe, V.P., & Thompson, M. (1978). Some aspects of the theory of estimating equations. Journal of Statistical Planning and Inference, 2, 95–104. CrossRefGoogle Scholar
  26. Hall, A.R. (2005). Generalized method of moments. Oxford: Oxford University Press. Google Scholar
  27. Hägglund, G. (1982). Factor analysis by instrumental variables. Psychometrika, 47, 209–222. CrossRefGoogle Scholar
  28. Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054. CrossRefGoogle Scholar
  29. Hu, L.T., Bentler, P.M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362. PubMedCrossRefGoogle Scholar
  30. Ihara, M., & Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51, 563–566. CrossRefGoogle Scholar
  31. Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202. CrossRefGoogle Scholar
  32. Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In: A.S. Goldberger & O.D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Academic Press. Google Scholar
  33. Jöreskog, K.G. (1977). Structural equation models in the social sciences: specification, estimation, and testing. in: P.R. Krishnaiah (Ed.), Applications of statistics (pp. 265–287). Amsterdam: North-Holland. Google Scholar
  34. Jöreskog, K.G. (1983). Factor analysis as an error-in-variables model. In: Wainer, H. & Messick, S. (Eds.) Principles of Modern Psychological Measurement (pp. 185–196). Hillsdale: Erlbaum. Google Scholar
  35. Kirby, J.B., & Bollen, K.A. (2009). Using instrumental variable tests to evaluated model specification in latent variable structural equation models. Sociological Methodology, 39, 327–355. PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kolenikov, S. (2011). Biases of parameter estimates in misspecified structural equation models. Sociological Methodology, 41, 119–157. CrossRefGoogle Scholar
  37. Kolenikov, S., & Bollen, K.A. (2012). Testing negative error variances: is a Heywood case a symptom of misspecification? Sociological Methods & Research, 41, 124–167. CrossRefGoogle Scholar
  38. Lawley, D.N. (1940). The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60, 64–82. Google Scholar
  39. Madansky, A. (1964). Instrumental variables in factor analysis. Psychometrika, 29, 105–113. CrossRefGoogle Scholar
  40. Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530. CrossRefGoogle Scholar
  41. Mátyás, L. (Ed.) (1999). Generalized method of moments estimation. Cambridge: Cambridge University Press. Google Scholar
  42. Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 1, 156–166. CrossRefGoogle Scholar
  43. Muthén, L.K., & Muthén, B. (1998–2010). Mplus user’s guide. Los Angeles: Muthén & Muthén. Google Scholar
  44. Nevitt, J., & Hancock, G.R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439–478. CrossRefGoogle Scholar
  45. Newey, W.K., & McFadden, D. (1986). Large sample estimation and hypothesis testing. In R.F. Engle & D. McFadden (Eds.), Handbook of Econometrics (Vol. 4, 1st ed., pp. 2111–2245). Amsterdam: Elsevier. Google Scholar
  46. Paxton, P.M., Curran, P., Bollen, K.A., Kirby, J., & Chen, F. (2001). Monte Carlo simulations in structural equation models. Structural Equation Modeling, 8, 287–312. CrossRefGoogle Scholar
  47. Pew Research Center (1998). Trust and citizen engagement in metropolitan Philadelphia: a case study. Washington: The Pew Research Center for the People and the Press. Google Scholar
  48. Sargan, J.D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26, 393–415. CrossRefGoogle Scholar
  49. Satorra, A. (1990). Robustness issues in structural equation modeling: a review of recent developments. Quality and Quantity, 24, 367–386. CrossRefGoogle Scholar
  50. Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C.C. Clogg (Eds.), Latent variable analysis (pp. 399–419). Thousand Oaks: Sage. Google Scholar
  51. Searle, S.R. (1982). Matrix algebra useful for statistics (1st ed.). New York: Wiley. Google Scholar
  52. Skrondal, A., & Hesketh, S.R. (2004). Generalized latent variable modeling. Boca Raton: Chapman & Hall/CRC. CrossRefGoogle Scholar
  53. Staiger, D., & Stock, J.H. (1997). Instrumental variables regression with weak instruments. Econometrica, 65, 557–586. CrossRefGoogle Scholar
  54. StataCorp (2011). Stata statistical software: release 12. College Station: StataCorp. Google Scholar
  55. Stock, J.H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In D.W.K. Andrews (Ed.), Identification and Inference for Econometric Models (pp. 80–108). New York: Cambridge University Press. CrossRefGoogle Scholar
  56. Stock, J.H., Wright, J.H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20, 518–529. CrossRefGoogle Scholar
  57. van der Vaart, A.W. (1998). Asymptotic statistics. New York: Wiley. CrossRefGoogle Scholar
  58. Wooldrige, J.M. (2010). Econometric analysis of cross section and panel data. Cambridge: MIT Press. Google Scholar
  59. Yuan, K., & Hayashi, K. (2006). Standard errors in covariance structure models: asymptotic versus bootstrap. British Journal of Mathematical & Statistical Psychology, 59, 397–417. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2013

Authors and Affiliations

  • Kenneth A. Bollen
    • 1
  • Stanislav Kolenikov
    • 2
  • Shawn Bauldry
    • 3
  1. 1.Department of SociologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Abt SRBICambridgeUSA
  3. 3.Department of SociologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations