Advertisement

Psychometrika

, Volume 78, Issue 2, pp 322–340 | Cite as

A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification

  • Simon J. Blanchard
  • Wayne S. DeSarbo
Article

Abstract

We introduce a new statistical procedure for the identification of unobserved categories that vary between individuals and in which objects may span multiple categories. This procedure can be used to analyze data from a proposed sorting task in which individuals may simultaneously assign objects to multiple piles. The results of a synthetic example and a consumer psychology study involving categories of restaurant brands illustrate how the application of the proposed methodology to the new sorting task can account for a variety of categorization phenomena including multiple category memberships and for heterogeneity through individual differences in the saliency of latent category structures.

Key words

categorization unobserved categories heterogeneity sorting task consumer psychology 

Notes

Acknowledgements

This article is based on parts of the first author’s doctoral dissertation, and he would like to thank Meg Meloy, Duncan Fong, and Richard Carlson whose feedback helped improve the contribution and quality of this manuscript. The authors also wish to thank the entire review team including the Editor, Associate Editor, and four anonymous reviewers for their constructive comments.

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. CrossRefGoogle Scholar
  2. Arabie, P., Carroll, J.D., DeSarbo, W.S., & Wind, J. (1981). Overlapping clustering: a new method for product positioning. Journal of Marketing Research, 18(3), 310–317. CrossRefGoogle Scholar
  3. Basford, K.E., & McLachlan, G.J. (1985). The mixture method of clustering applied to three-way data. Journal of Classification, 2(1), 109–125. CrossRefGoogle Scholar
  4. Bijmolt, T.H.A., & Wedel, M. (1995). The effects of alternative methods of collecting similarity data for multidimensional scaling. International Journal of Research in Marketing, 12(4), 363–371. CrossRefGoogle Scholar
  5. Blanchard, S.J., Aloise, D., & DeSarbo, W.S. (2012). The heterogenous p-median for categorization based clustering. Psychometrika, 77(4), 741–762. CrossRefGoogle Scholar
  6. Blanchard, S.J., DeSarbo, W.S., Atalay, A.S., & Harmancioglu, N. (2011). Identifying consumer heterogeneity in unobserved categories. Marketing Letters, 23(1), 177–194. CrossRefGoogle Scholar
  7. Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52(3), 345–370. CrossRefGoogle Scholar
  8. Cameron, A.C., & Windmeijer, F.A.G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. CrossRefGoogle Scholar
  9. Carlson, K.A., Meloy, M.G., & Russo, J.E. (2006). Leader-driven primacy: using attribute order to affect consumer choice. Journal of Consumer Research, 32(March), 513–518. CrossRefGoogle Scholar
  10. Carroll, J.D., & Arabie, P. (1983). INDCLUS: an individual differences generalization of the ADCLUS model and the MAPCLUS algorithm. Psychometrika, 48(2), 157–169. CrossRefGoogle Scholar
  11. Carroll, J.D., Clark, L.A., & DeSarbo, W.S. (1984). The representation of three-way proximity data by single and multiple tree structure models. Journal of Classification, 1(1), 25–74. CrossRefGoogle Scholar
  12. Coxon, A.P.M. (1999). Sorting data: collection and analysis. Thousand Oaks: Sage. Google Scholar
  13. Daws, J.T. (1996). The analysis of free-sorting data: beyond pairwise co-occurrence. Journal of Classification, 13(1), 57–80. CrossRefGoogle Scholar
  14. Degerman, R. (1982). Ordered binary trees constructed through an application of Kendall’s tau. Psychometrika, 47(4), 523–527. CrossRefGoogle Scholar
  15. DeSarbo, W.S., & Cho, J. (1989). A stochastic multidimensional vector threshold model for the spatial representation of ‘pick any/n’data. Psychometrika, 54(1), 105–129. CrossRefGoogle Scholar
  16. DeSarbo, W.S., & Wu, J. (2001). The joint spatial representation of multiple variable batteries collected in marketing research. Journal of Marketing Research, 38(2), 244–253. CrossRefGoogle Scholar
  17. DeSarbo, W.S., Jedidi, K., & Johnson, M.D. (1991). A new clustering methodology for the analysis of sorted or categorized stimuli. Marketing Letters, 2(3), 267–279. Google Scholar
  18. Ehrenberg, A.S.C. (1988). Repeat-buying: facts, theory and applications. New York: Oxford University Press. Google Scholar
  19. Evans, S.H., & Arnoult, M. (1967). Schematic concept formation: demonstration in a free sorting task. Psychonomic Science, 9(4), 221–222. Google Scholar
  20. Gill, P.E., Murray, W., & Wright, M.H. (1981). Practical optimization. New York: Academic Press. Google Scholar
  21. Goldstone, R.L. (1994). The role of similarity in categorization: providing groundwork. Cognition, 52(2), 125–157. PubMedCrossRefGoogle Scholar
  22. Goodhardt, G.J., Ehrenberg, A.S.C., & Chatfield, C. (1984). The Dirichlet: a comprehensive model of buying behaviour with discussion. Journal of the Royal Statistical Society. Series A, 147(5), 621–655. CrossRefGoogle Scholar
  23. Green, W.H. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models (Working Paper EC-94-10). New York University. Google Scholar
  24. Gregan-Paxton, J., Hoeffler, S., & Zhao, M. (2005). When categorization is ambiguous: factors that facilitate the use of a multiple category inference strategy. Journal of Consumer Psychology, 15(2), 127–140. CrossRefGoogle Scholar
  25. Grogger, J.T., & Carson, R.T. (1991). Models for truncated counts. Journal of Applied Econometrics, 6(3), 225–238. CrossRefGoogle Scholar
  26. Hampton, J.A. (1998). Similarity-based categorization and fuzziness of natural categories. Cognition, 65(2–3), 137–165. PubMedCrossRefGoogle Scholar
  27. Hunt, L.A., & Basford, K.E. (2001). Fitting a mixture model to three-mode three-way data with missing information. Journal of Classification, 18(2), 209–226. Google Scholar
  28. Isen, A.M. (1984). Toward understanding the role of affect in cognition. In R.S. Wyer Jr. & T.K. Srull (Eds.), Handbook of social cognition (pp. 179–236). Hillsdale: Lawrence Erlbaum. Google Scholar
  29. Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254. PubMedCrossRefGoogle Scholar
  30. Klastorin, T.T. (1980). Merging groups to maximize object partition comparison. Psychometrika, 45(4), 425–433. CrossRefGoogle Scholar
  31. Laran, J., Janiszewski, C., & Cunha, M. Jr. (2008). Context-dependent effects on goal primes. Journal of Consumer Research, 35(December), 653–667. CrossRefGoogle Scholar
  32. Lee, M.D. (2001). On the complexity of additive clustering models. Journal of Mathematical Psychology, 45(February), 131–148. PubMedCrossRefGoogle Scholar
  33. Li, S., Liechty, J.C., & Montgomery, A.L. (2002). Modeling category viewership of web users with multivariate count models (Working Paper). Indiana University. Google Scholar
  34. Loken, B., & Ward, J. (1990). Alternative approaches to understanding the determinants of typicality. Journal of Consumer Research, 17(2), 111–126. CrossRefGoogle Scholar
  35. Loken, B., Barsalou, L.W., & Joiner, C. (2008). Categorization theory and research in consumer psychology: category representation and category-based inference. In P.M. Haugtvedt, P.M. Herr, & F.R. Kardes (Eds.), Handbook of consumer psychology. Mahwah: Erlbaum. Google Scholar
  36. MacKay, D.B., Easley, R.F., & Zinnes, J.L. (1995). A single ideal point model for market structure analysis. Journal of Marketing Research, 32(4), 433–443. CrossRefGoogle Scholar
  37. Macrae, C.N., Bodenhausen, G.V., & Milne, A.B. (1995). The dissection of selection in person perception: inhibitory processes in social stereotyping. Journal of Personality and Social Psychology, 69(3), 397–407. PubMedCrossRefGoogle Scholar
  38. Malt, B.C., Ross, B.H., & Murphy, G.L. (1995). Predicting features for members of natural categories when categorization is uncertain. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(3), 646–661. PubMedCrossRefGoogle Scholar
  39. McLachlan, P., & Nelder, J.A. (1983). Generalized linear models. London: Chapman & Hall. Google Scholar
  40. Medin, D.L., Goldstone, R.L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100(2), 254–278. CrossRefGoogle Scholar
  41. Mervis, C.B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32(January), 89–115. CrossRefGoogle Scholar
  42. Moreau, C.P., Markman, A.B., & Lehmann, D.R. (2001). “What is it?” Categorization flexibility and consumers’ responses to really new products. Journal of Consumer Research, 27(4), 489–498. CrossRefGoogle Scholar
  43. Murphy, G.L., & Ross, B.H. (1994). Predictions from uncertain categorizations. Cognitive Psychology, 24(2), 148–193. CrossRefGoogle Scholar
  44. Nocedal, J., & Wright, S. (1999). Numerical optimization. New York: Springer. CrossRefGoogle Scholar
  45. Pothos, E.M., & Chater, N. (2005). Unsupervised categorization and category learning. The Quartely Journal of Experimental Psychology Section A, 58(4), 733–752. CrossRefGoogle Scholar
  46. Rajagopal, P., & Burnkrant, R.E. (2008). Consumer evaluations of hybrid products. Journal of Consumer Research, 36(August), 232–241. Google Scholar
  47. Ramaswamy, V., Anderson, E.W., & DeSarbo, W.S. (1994). A disaggregate negative binomial regression procedure for count data analysis. Management Science, 40(3), 405–417. CrossRefGoogle Scholar
  48. Ramsay, J.O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42(2), 241–266. CrossRefGoogle Scholar
  49. Ramsay, J.O. (1982). The joint analysis of direct ratings, pairwise preferences, and dissimilarities. Psychometrika, 45(2), 149–165. CrossRefGoogle Scholar
  50. Rao, V.R., & Katz, R. (1971). Alternative multidimensional scaling methods for large stimulus sets. Journal of Marketing Research, 8(4), 488–494. CrossRefGoogle Scholar
  51. Rosch, E.H. (1973). Natural categories. Cognitive Psychology, 4(3), 328–350. CrossRefGoogle Scholar
  52. Rosch, E. (1978). Principles of categorization. In E. Rosch & B.B. Lloyd (Eds.), Cognition and categorization. Hillsdale: Erlbaum. Google Scholar
  53. Rosenberg, S., & Kim, M.P. (1975). Method of sorting as a data-gathering procedure in multivariate research. Multivariate Behavioral Research, 10(4), 489–502. CrossRefGoogle Scholar
  54. Ross, B.H., & Murphy, G.L. (1999). Food for thought: cross-classification and category organization in a complex real-world domain. Cognitive Psychology, 38(4), 495–554. PubMedCrossRefGoogle Scholar
  55. Schwarz, G.E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. CrossRefGoogle Scholar
  56. Shepard, R.N., & Arabie, P. (1979). Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86(2), 87–123. CrossRefGoogle Scholar
  57. Takane, Y. (1980). Analysis of categorizing behavior using a quantification method. Behaviormetrika, 7(8), 75–86. CrossRefGoogle Scholar
  58. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352. CrossRefGoogle Scholar
  59. Vermunt, J.K. (2007). A hierarchical mixture model for clustering three-way data sets. Computational Statistics & Data Analysis, 51(11), 5368–5376. CrossRefGoogle Scholar
  60. Vlek, C., & Stallen, P.J. (1981). Judging risks and benefits in the small and in the large. Organizational Behavior and Human Performance, 28(2), 235–271. CrossRefGoogle Scholar
  61. Wedel, M., & DeSarbo, W.S. (1993). A latent class binomial logit methodology for the analysis of paired comparison choice data. Decision Sciences, 24(6), 1157–1170. CrossRefGoogle Scholar
  62. Wedel, M., & Kamakura, W.A. (2000). Market segmentation: conceptual and methodological foundations. Boston: Kluwer Academic. CrossRefGoogle Scholar
  63. Winsberg, S., & Carroll, J.D. (1989). A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model. Psychometrika, 54(2), 217–229. CrossRefGoogle Scholar
  64. Winsberg, S., & De Soete, G. (1993). A latent class approach to fitting the weighted Euclidean model, CLASCAL. Psychometrika, 58(2), 315–330. CrossRefGoogle Scholar
  65. Yang, C.-C., & Yang, C.-C. (2007). Separating latent classes by information criteria. Journal of Classification, 24(2), 183–203. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2013

Authors and Affiliations

  1. 1.McDonough School of BusinessGeorgetown UniversityWashingtonUSA
  2. 2.Department of MarketingPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations