Skip to main content
Log in

A Multicomponent Latent Trait Model for Diagnosis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper presents a noncompensatory latent trait model, the multicomponent latent trait model for diagnosis (MLTM-D), for cognitive diagnosis. In MLTM-D, a hierarchical relationship between components and attributes is specified to be applicable to permit diagnosis at two levels. MLTM-D is a generalization of the multicomponent latent trait model (MLTM; Whitely in Psychometrika, 45:479–494, 1980; Embretson in Psychometrika, 49:175–186, 1984) to be applicable to measures of broad traits, such as achievement tests, in which component structure varies between items. Conditions for model identification are described and marginal maximum likelihood estimators are presented, along with simulation data to demonstrate parameter recovery. To illustrate how MLTM-D can be used for diagnosis, an application to a large-scale test of mathematics achievement is presented. An advantage of MLTM-D for diagnosis is that it may be more applicable to large-scale assessments with more heterogeneous items than are latent class models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 46, 443–445.

    Article  Google Scholar 

  • Bolt, D.M., & Lall, V.F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395–414.

    Article  Google Scholar 

  • Cai, L. (2010). Metropolis-Hastings Robbins-Monroe algorithm for confirmatory factor analysis. Journal of Educational and Behavioral Statistics, 35, 307–335.

    Article  Google Scholar 

  • Cai, L., du Toit, S.H.C., & Thissen, D. (2012). IRTPRO: Flexible, multidimensional, multiple category IRT modeling. Chicago: Scientific Software International. Computer software.

    Google Scholar 

  • Cho, S.-J., & Rabe-Hesketh, S. (2011). Alternating imputation posterior estimation of models with crossed random effects. Computational Statistics & Data Analysis, 55, 12–25.

    Article  Google Scholar 

  • Daniel, R.C., & Embretson, S.E. (2010). Designing cognitive complexity in mathematical problem solving items. Applied Psychological Measurement, 348–364.

  • DeCarlo, L.T. (2011). The analysis of fraction subtraction data: the DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.

    Article  Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2009). Q-matrix validation under the generalized DINA model framework. In The international meeting of the psychometric society, Cambridge, St John’s College, July 20th–24th.

    Google Scholar 

  • de la Torre, J., & Douglas, J.A. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.

    Article  Google Scholar 

  • DiBello, L.V., Stout, W.F., & Roussos, L.A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P.D. Nichols, S.F. Chipman, & R.L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 327–359). Erlbaum: Hillsdale.

    Google Scholar 

  • Embretson, S.E. (1984). A general multicomponent latent trait model for response processes. Psychometrika, 49, 175–186.

    Article  Google Scholar 

  • Embretson, S.E. (1995). Working memory capacity versus general central processes in intelligence. Intelligence, 20, 169–189.

    Article  Google Scholar 

  • Embretson, S.E. (1999). Generating items during testing: psychometric issues and models. Psychometrika, 64, 407–433.

    Article  Google Scholar 

  • Embretson, S.E. (2010). An adaptive testing system for diagnosing sources of mathematics difficulties. Project R305A100234. Washington, Institute of Educational Sciences.

  • Embretson, S.E., & Daniel, R.C. (2008). Understanding and quantifying cognitive complexity level in mathematical problem solving items. Psychology Science, 50, 328–344.

    Google Scholar 

  • Embretson, S.E., & McCollam, K.M. (2000). A multicomponent Rasch model for covert processes. In M. Wilson & G. Engelhard (Eds.), Objective measurement V. Norwood: Ablex.

    Google Scholar 

  • Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

    Article  Google Scholar 

  • Gorin, J. (2007). Test design with cognition in mind. Educational Measurement, Issues and Practice, 4, 21–35.

    Article  Google Scholar 

  • Haertel, E.H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 333–352.

    Article  Google Scholar 

  • Hartz, S. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: blending theory with practice. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign.

  • Henson, R.A., Templin, J.L., & Willse, J.T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 197–212.

    Article  Google Scholar 

  • Mislevy, R.J., & Bock, R.D. (1990). BILOG 3: item analysis and test scoring with binary logistic models. Chicago: Scientific Software International.

    Google Scholar 

  • National Mathematics Advisory Panel (2008). Foundations for success: final report. U.S. Department of Education.

  • Pellegrino, J., Goldman, S., DiBello, L., Gomez, K., & Stout, W. (2011). Evaluating the cognitive, psychometric and instructional affordances of curriculum-embedded assessments: a comprehensive validity-based approach. Chicago: Learning Sciences Institute, University of Illinois.

    Google Scholar 

  • Poggio, J.P. (2011). Indicators, benchmarks and standards reflected in items for mathematical achievement tests in middle school (Technical Report KU-10012011). Institute of Educational Science Mathematics Diagnosis Project, Lawrence, Kansas.

  • Roussos, L., DiBello, L., Henson, R., Jang, E., & Templin, J. (2010). Skills diagnosis for education and psychology with IRT-based parametric latent class models. In S.E. Embretson (Ed.), Measuring psychological constructs: advances in model-based approaches. Washington: American Psychological Association.

    Google Scholar 

  • Rupp, A., & Templin, J. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68, 78–96.

    Article  Google Scholar 

  • Rupp, A.A., Templin, J., & Henson, R.J. (2010). Diagnostic measurement: theory, methods, and applications. New York: Guilford Press.

    Google Scholar 

  • Stout, W. (2007). Skills diagnosis using IRT-based continuous latent trait models. Journal of Educational Measurement, 44, 313–324.

    Article  Google Scholar 

  • Tatsuoka, K.K. (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.

    Article  Google Scholar 

  • Templin, J.L., & Henson, R.A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report RR-05-16). Princeton: ETS.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical & Statistical Psychology, 61, 287–307.

    Article  Google Scholar 

  • von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement: Interdisciplinary Research and Perspectives, 7(1), 67–74.

    Article  Google Scholar 

  • von Davier, M., & Sinharay, S. (2010). Stochastic approximation for latent regression item response models. Journal of Educational and Behavioral Statistics, 35, 174–193.

    Article  Google Scholar 

  • von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman conference. Educational testing service: the inn at Penn. Philadelphia, October.

  • von Davier, M., & Yamamoto, K. (2007). Mixture distribution Rasch models and hybrid Rasch models. In M. Davier & C.H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models. New York: Springer.

    Google Scholar 

  • Webb, N.L. (1999). Alignment of science and mathematics standards and assessments in four states (Research Monograph No. 18). Madison, National Institute for Science Education University of Wisconsin-Madison.

  • Whitely, S.E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45, 479–494.

    Article  Google Scholar 

  • Yang, X. (2010). Construct theory-driven cognitive diagnostic testing in the domain of algebra story problems. Shanghai: National Science Foundation of China.

    Google Scholar 

  • Yang, X., & Embretson, S.E. (2007). Construct validity and cognitive diagnostic assessment. In J.P. Leighton & M. Gierl (Eds.), Cognitive diagnostic assessment for education. New York: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Yang.

Additional information

Preparation of this paper was partially supported by Institute of Educational Sciences Grant R305A100234, Susan Embretson, PI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Embretson, S.E., Yang, X. A Multicomponent Latent Trait Model for Diagnosis. Psychometrika 78, 14–36 (2013). https://doi.org/10.1007/s11336-012-9296-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9296-y

Key words

Navigation