Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Psychometrika
  3. Article

Simplicity and Typical Rank Results for Three-Way Arrays

  • Published: 05 January 2011
  • Volume 76, pages 3–12, (2011)
  • Cite this article
Download PDF
Psychometrika Aims and scope Submit manuscript
Simplicity and Typical Rank Results for Three-Way Arrays
Download PDF
  • Jos M. F. ten Berge1 
  • 695 Accesses

  • 7 Citations

  • Explore all metrics

Abstract

Matrices can be diagonalized by singular vectors or, when they are symmetric, by eigenvectors. Pairs of square matrices often admit simultaneous diagonalization, and always admit block wise simultaneous diagonalization. Generalizing these possibilities to more than two (non-square) matrices leads to methods of simplifying three-way arrays by nonsingular transformations. Such transformations have direct applications in Tucker PCA for three-way arrays, where transforming the core array to simplicity is allowed without loss of fit. Simplifying arrays also facilitates the study of array rank. The typical rank of a three-way array is the smallest number of rank-one arrays that have the array as their sum, when the array is generated by random sampling from a continuous distribution. In some applications, the core array of Tucker PCA is constrained to have a vast majority of zero elements. Both simplicity and typical rank results can be applied to distinguish constrained Tucker PCA models from tautologies. An update of typical rank results over the real number field is given in the form of two tables.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Bennani Dosse, M., & Ten Berge, J.M.F. (2008). The assumption of proportional components when Candecomp is applied to symmetric matrices in the context of Indscal. Psychometrika, 73, 303–307.

    Article  Google Scholar 

  • Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–319.

    Article  Google Scholar 

  • Choulakian, V. (2010). Some numerical results on the rank of generic three-way arrays over ℜ. SIAM Journal on Matrix Analysis and Applications, 31, 1541–1551.

    Article  Google Scholar 

  • Comon, P., Ten Berge, J.M.F., De Lathauwer, L., & Castaing, J. (2009). Generic and typical ranks of multiway arrays. Linear Algebra & Applications, 430, 2997–3007.

    Article  Google Scholar 

  • De Lathauwer, L. (2006). A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications, 28, 642–666.

    Article  Google Scholar 

  • Gurden, S.P., Westerhuis, J.A., Bijlsma, S., & Smilde, A.K. (2001). Modeling of spectroscopic batch process data using grey models to incorporate external information. Journal of Chemometrics, 15, 101–121.

    Article  Google Scholar 

  • Friedland, S. (2010). On the generic and typical rank of 3-tensors. arXiv:0805.3777v4.

  • Harshman, R.A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.

    Google Scholar 

  • Harshman, R.A. (1972). Determination and proof of minimum uniqueness conditions for PARAFAC1. UCLA Working Papers in Phonetics, 16, 1–84.

    Google Scholar 

  • Hitchcock, F.L. (1927a). The expression of a tensor or a polyadic as a sum of products. Journal of Mathematical Physics, 6, 164–189.

    Google Scholar 

  • Hitchcock, F.L. (1927b). Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematical Physics, 7, 39–79.

    Google Scholar 

  • Jiang, T., & Sidiropoulos, N.D. (2004). Kruskal’s permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing, 52, 2625–2636.

    Article  Google Scholar 

  • Kiers, H.A.L. (1998). Three-way SIMPLIMAX for oblique rotation of the three-mode factor analysis core to simple structure. Computational Statistics & Data Analysis, 28, 307–324.

    Article  Google Scholar 

  • Kiers, H.A.L., Ten Berge, J.M.F., & Rocci, R. (1997). Uniqueness of three-mode factor models with sparse cores: The 3×3×3 case. Psychometrika, 62, 349–374.

    Article  Google Scholar 

  • Kolda, T.G., & Brader, B.W. (2009). Tensor decompositions and applications. SIAM Review, 51, 455–500.

    Article  Google Scholar 

  • Kroonenberg, P.M., & De Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least-squares. Psychometrika, 45, 69–97.

    Article  Google Scholar 

  • Kruskal, J.B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions with applications to arithmetic complexity and statistics. Linear Algebra & Applications, 18, 95–138.

    Article  Google Scholar 

  • Kruskal, J.B. (1983, unpublished). Statement of some current results about three-way arrays.

  • Kruskal, J.B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way arrays. In Coppi, R., & Bolasco, S. (Eds.) Multiway data analysis (pp. 7–18). Amsterdam: North-Holland.

    Google Scholar 

  • Murakami, T., Ten Berge, J.M.F., & Kiers, H.A.L. (1998). A case of extreme simplicity of the core matrix in three-mode principal component analysis. Psychometrika, 63, 255–261.

    Article  Google Scholar 

  • Rocci, R., & Ten Berge, J.M.F. (1994). A simplification of a result by Zellini on the maximal rank of a symmetric three-way array. Psychometrika, 59, 377–380.

    Article  Google Scholar 

  • Rocci, R., & Ten Berge, J.M.F. (2002). Transforming three-way arrays to maximal simplicity. Psychometrika, 67, 351–365.

    Article  Google Scholar 

  • Sidiropoulos, N.D., & Bro, R. (2000). On the uniqueness of multilinear decomposition of N-way arrays. Journal of Chemometrics, 14, 229–239.

    Article  Google Scholar 

  • Stegeman, A.W. (2009). On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode. Linear Algebra & Applications, 431, 211–227.

    Article  Google Scholar 

  • Stegeman, A.W., & Ten Berge, J.M.F. (2006). Kruskal’s condition for uniqueness in Candecomp/Parafac when ranks and k-ranks coincide. Computational Statistics & Data Analysis, 50, 210–220.

    Article  Google Scholar 

  • Stegeman, A., Ten Berge, J.M.F., & De Lathauwer, L. (2006). Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices. Psychometrika, 71, 219–229.

    Article  Google Scholar 

  • Stegeman, A., & Sidiropoulos, N.D. (2007). On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra & Applications, 420, 540–552.

    Article  Google Scholar 

  • Sumi, T., Sakata, T., & Miyazaki, M. (2010). Typical ranks for m×n×(m−1)n tensors with m≤n. Preprint, retrieved from http://polygon.aid.design.kyushu-u.ac.jp/~sumi/myarticles.html, October 14, 2010.

  • Ten Berge, J.M.F. (1991). Kruskal’s polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika, 56, 631–636.

    Article  Google Scholar 

  • Ten Berge, J.M.F. (2000). The typical rank of tall three-way arrays. Psychometrika, 65, 525–532.

    Article  Google Scholar 

  • Ten Berge, J.M.F. (2004). Partial uniqueness in CANDECOMP/PARAFAC. Journal of Chemometrics, 18, 12–16.

    Article  Google Scholar 

  • Ten Berge, J.M.F., & Kiers, H.A.L. (1999). Simplicity of core arrays in three-way principal component analysis and the typical rank of P×Q×2 arrays. Linear Algebra & Applications, 294, 169–179.

    Article  Google Scholar 

  • Ten Berge, J.M.F., & Sidiropoulos, N.D. (2002). Some new results on uniqueness in Candecomp/Parafac. Psychometrika, 67, 399–409.

    Article  Google Scholar 

  • Ten Berge, J.M.F., Sidiropoulos, N.D., & Rocci, R. (2004). Typical rank and Indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3. Linear Algebra & Applications, 388, 363–377.

    Article  Google Scholar 

  • Ten Berge, J.M.F., & Smilde, A.K. (2002). Non-triviality and identification of a constrained Tucker3 analysis. Journal of Chemometrics, 16, 609–612.

    Article  Google Scholar 

  • Ten Berge, J.M.F., & Stegeman, A. (2006). Symmetry transformations for square sliced three-way arrays, with applications to their typical rank. Linear Algebra & Applications, 418, 215–224.

    Article  Google Scholar 

  • Ten Berge, J.M.F., Stegeman, A., & Bennani Dosse, M. (2009). The Carroll-Chang conjecture of equal Indscal components when Candecomp/Parafac gives perfect fit. Linear Algebra & Applications, 430, 818–829.

    Article  Google Scholar 

  • Ten Berge, J.M.F., & Tendeiro, J.N. (2009). The link between sufficient conditions by Harshman and by Kruskal for uniqueness in Candecomp/Parafac. Journal of Chemometrics, 23, 321–323.

    Article  Google Scholar 

  • Tendeiro, J.N., Ten Berge, J.M.F., & Kiers, H.A.L. (2009). Simplicity transformations for three-way arrays with symmetric slices, and applications to Tucker-3 models with sparse core arrays. Linear Algebra & Applications, 430, 924–940.

    Article  Google Scholar 

  • Thijsse, G.P.A. (1994). Simultaneous diagonal forms for pairs of matrices (Report 9450/B). Econometric Institute. Erasmus University, Rotterdam.

  • Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279–311.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Groningen, Groningen, The Netherlands

    Jos M. F. ten Berge

Authors
  1. Jos M. F. ten Berge
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jos M. F. ten Berge.

Additional information

This research was done jointly with Henk Kiers, Roberto Rocci, Alwin Stegeman, and Jorge Tendeiro. The author is obliged to Henk Kiers and Mohammed Bennani Dosse for helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Berge, J.M.F. Simplicity and Typical Rank Results for Three-Way Arrays. Psychometrika 76, 3–12 (2011). https://doi.org/10.1007/s11336-010-9193-1

Download citation

  • Published: 05 January 2011

  • Issue Date: January 2011

  • DOI: https://doi.org/10.1007/s11336-010-9193-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • tensor decomposition
  • tensor rank
  • typical rank
  • sparse arrays
  • Candecomp
  • Parafac
  • Tucker component analysis
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2024 Springer Nature