Advertisement

Psychometrika

, Volume 75, Issue 2, pp 373–390 | Cite as

Optimization of Blocked Designs in fMRI Studies

  • Bärbel MausEmail author
  • Gerard J. P. van Breukelen
  • Rainer Goebel
  • Martijn P. F. Berger
Article

Abstract

Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is characterized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest blocks, and the time between trials within one block. Optimal design theory was applied to find the optimal combination of these three design factors. Furthermore, different error structures were used within a general linear model for the analysis of fMRI data, and the maximin criterion was applied to find designs which are robust against misspecification of model parameters.

Keywords

blocked design fMRI optimal design efficiency maximin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, G.K., & D’Esposito, M. (1999). Experimental design for brain fMRI. In C.T.W. Moonen, & P.A. Bandettini (Eds.), Functional MRI (pp. 369–380). Berlin: Springer. Google Scholar
  2. Atkinson, A.C., & Donev, A.N. (1996). Optimum experimental designs. Oxford: Clarendon. Google Scholar
  3. Berger, M.P.F., & Tan, F.E.S. (2004). Robust designs for linear mixed effects model. Applied Statistics, 53(4), 569–581. Google Scholar
  4. Binder, J.R., Rao, S.M., Hammeke, T.A., Frost, J.A., Bandettini, P.A., & Hyde, J.S. (1994). Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Cognitive Brain Research, 2, 31–38. CrossRefPubMedGoogle Scholar
  5. Birn, R.M., Cox, R.W., & Bandettini, P.A. (2002). Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. NeuroImage, 15, 252–264. CrossRefPubMedGoogle Scholar
  6. Boynton, G.M., Engel, S.A., Glover, G.H., & Heeger, D.J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16(13), 4207–4221. PubMedGoogle Scholar
  7. Buckner, R.L., Bandettini, P.A., O’Craven, K.M., Savoy, R.L., Petersen, S.E., Raichle, M.E., & Rosen, B.R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 93, 14878–14883. CrossRefPubMedGoogle Scholar
  8. Bullmore, E., Brammer, M., Williams, S.C.R., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R., & Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance in Medicine, 35, 261–277. CrossRefPubMedGoogle Scholar
  9. Buračas, G.T., & Boynton, G.M. (2002). Efficient design of event-related fMRI experiments using M-sequences. NeuroImage, 16, 801–813. CrossRefPubMedGoogle Scholar
  10. Burock, M.A., & Dale, A.M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Human Brain Mapping, 11, 249–260. CrossRefPubMedGoogle Scholar
  11. Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10(3), 273–304. CrossRefGoogle Scholar
  12. Chatfield, C. (2003). The Analysis of Time Series: An Introduction (6th ed.). London/Boca Raton: Chapman and Hall/CRC Press. Google Scholar
  13. Chein, J.M., & Schneider, W. (2003). Designing effective fMRI experiments. In J. Grafman, & I. Robertson (Eds.), The handbook of neuropsychology. Amsterdam: Elsevier. Google Scholar
  14. Cohen, M.S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103. CrossRefPubMedGoogle Scholar
  15. Conlisk, J., & Watts, H. (1979). A model for optimizing experimental designs for estimating response surfaces. Journal of Econometrics, 11, 27–42. CrossRefGoogle Scholar
  16. Culham, J.C. (2006). Functional neuroimaging: Experimental design and analysis. In R. Cabeza, & A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (pp. 53–82). Cambridge: MIT Press. Google Scholar
  17. Dale, A.M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114. CrossRefPubMedGoogle Scholar
  18. Dale, A.M., & Buckner, R.L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329–340. CrossRefPubMedGoogle Scholar
  19. Dette, H., Martinez Lopez, I., Ortiz Rodriguez, I.M., & Pepelyshev, A. (2006). Maximin efficient design of experiment for exponential regression models. Journal of Statistical Planning and Inference, 136, 4397–4418. CrossRefGoogle Scholar
  20. Di Salle, F., Formisano, E., Linden, D.E.J., Goebel, R., Bonavita, S., Pepino, A., Smaltino, F., & Tedeschi, G. (1999). Exploring brain function with magnetic resonance imaging. European Journal of Radiology, 30, 84–94. CrossRefPubMedGoogle Scholar
  21. Donaldson, D.I., & Buckner, R.L. (2001). Effective paradigm design. In P. Jezzard, P.M. Matthews, & S.M. Smith (Eds.), Functional MRI: an introduction to methods (pp. 177–196). Oxford: Oxford University Press. Google Scholar
  22. Flaherty, P., Jordan, M.I., & Arkin, A.P. (2006). Robust design of biological experiments. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 363–370). Cambridge: MIT Press. Google Scholar
  23. Formisano, E., Esposito, F., Di Salle, F., & Goebel, R. (2004). Cortex-based independent component analysis of fMRI time series. Magnetic Resonance Imaging, 22, 1493–1504. CrossRefPubMedGoogle Scholar
  24. Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., & Turner, R. (1998). Event-related fMRI: characterizing differential responses. NeuroImage, 7, 30–40. CrossRefPubMedGoogle Scholar
  25. Friston, K.J., Holmes, A.P., Poline, J.-B., Grasby, P.J., Williams, S.C.R., Frackowiak, R.S.J., & Turner, R. (1995). Analysis of fMRI time-series revisited. NeuroImage, 2, 45–53. CrossRefPubMedGoogle Scholar
  26. Friston, K.J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153–171. CrossRefGoogle Scholar
  27. Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N.A., & Dale, A.M. (1999). Stochastic designs in event-related fMRI. NeuroImage, 10, 607–619. CrossRefPubMedGoogle Scholar
  28. Gautama, T., & Van Hulle, M.M. (2005). Estimating the global order of the fMRI noise model. NeuroImage, 26, 1211–1217. CrossRefPubMedGoogle Scholar
  29. Goebel, R., Muckli, L., Zanella, F.E., Singer, W., & Stoerig, P. (2001). Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Research, 41, 1459–1474. CrossRefPubMedGoogle Scholar
  30. Hagberg, G.E., Zito, G., Patria, F., & Sanes, J.N. (2001). Improved detection of event-related functional MRI signals using probability functions. NeuroImage, 14, 1193–1205. CrossRefPubMedGoogle Scholar
  31. Heckman, G.M., Bouvier, S.E., Carr, V.A., Harley, E.M., Cardinal, K.S., & Engel, S.A. (2007). Nonlinearities in rapid event-related fMRI explained by stimulus scaling. NeuroImage, 34, 651–660. CrossRefPubMedGoogle Scholar
  32. Henson, R.N.A. (2004). Analysis of fMRI time series. In R.S.J. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. Ashburner, & W. Penny (Eds.), Human brain function (pp. 793–822). Amsterdam: Elsevier. Google Scholar
  33. Honey, G.D., & Bullmore, E.T. (2002). Functional neuroimaging and schizophrenia. Psychiatry, 1, 26–29. Google Scholar
  34. Huettel, S.A., & McCarthy, G. (2000). Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage, 11, 547–553. CrossRefPubMedGoogle Scholar
  35. Josephs, O., & Henson, R.N.A. (1999). Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society B, 354, 1215–1228. CrossRefGoogle Scholar
  36. Kao, M.-H., Mandal, A., Lazar, N., & Stufken, J. (2009). Multi-objective optimal experimental designs for event-related fMRI studies. NeuroImage, 44, 849–856. CrossRefPubMedGoogle Scholar
  37. Liu, T.T. (2004). Efficiency, power and entropy in event-related fMRI with multiple trial types, part II: design of experiments. Neuroimage, 21, 401–413. CrossRefPubMedGoogle Scholar
  38. Liu, T.T., & Frank, L.R. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types, part I: theory. NeuroImage, 21, 387–400. CrossRefPubMedGoogle Scholar
  39. Liu, T.T., Frank, L.R., Wong, E.C., & Buxton, R.B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13, 759–773. CrossRefPubMedGoogle Scholar
  40. Logothetis, N.K., & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769. CrossRefPubMedGoogle Scholar
  41. Maus, B., van Breukelen, G.J.P., Goebel, R., & Berger, M.P.F. (2010). Robustness of optimal design of fMRI experiments with application of a genetic algorithm. NeuroImage, 49, 2433–2443. CrossRefPubMedGoogle Scholar
  42. Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11, 735–759. CrossRefPubMedGoogle Scholar
  43. Mohamed, F.B., Tracy, J.I., Faro, S.H., Emperado, J., Koenigsberg, R., Pinus, A., & Tsai, F.Y. (2000). Investigation of alternating and continuous experimental task designs during single finger opposition fMRI: a comparative study. Journal of Computer Assisted Tomography, 24(6), 935–941. CrossRefPubMedGoogle Scholar
  44. Nakai, T., Matsumura, A., Nose, T., Kato, C., Glover, G.H., & Matsuo, K. (2003). The effect of task block arrangement on the detectability of activation in fMRI. Magnetic Resonance Imaging, 21, 941–947. CrossRefPubMedGoogle Scholar
  45. Ouwens, M.J.N.M., Tan, F.E.S., & Berger, M.P.F. (2002). Maximin D-optimal designs for longitudinal mixed effects model. Biometrics, 58, 735–741. CrossRefPubMedGoogle Scholar
  46. Owen, A.M., Epstein, R., & Johnsrude, I.S. (2003). fMRI: applications to cognitive neuroscience. In P. Jezzard, P.M. Matthews, & S.M. Smith (Eds.), Functional MRI: an introduction to methods (pp. 311–327). Oxford: Oxford University Press. Google Scholar
  47. Pollmann, S., Wiggins, C.J., Norris, D.G., von Cramon, D.Y., & Schubert, T. (1998). Use of short intertrial intervals in single-trial experiments: a 3T fMRI-study. Neuroimage, 8, 327–339. CrossRefPubMedGoogle Scholar
  48. Pronzato, L., & Walter, E. (1988). Robust experimental design via maximin optimization. Mathematical Biosciences, 89, 161–176. CrossRefGoogle Scholar
  49. Purdon, P.L., & Weisskoff, R.M. (1998). Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain Mapping, 6, 239–249. CrossRefPubMedGoogle Scholar
  50. Rosen, B.R., Buckner, R.L., & Dale, A.M. (1998). Event-related functional MRI: past, present and future. Proceedings of the National Academy of Sciences, 95, 773–780. CrossRefGoogle Scholar
  51. Silvey, S. (1980). Optimal design. London: Chapman & Hall. Google Scholar
  52. Sim, R., & Roy, N. (2005). Global A-optimal robot exploration in SLAM. In Proceedings of the IEEE/RSJ international conference of robotics and automation (ICRA 2005) (pp. 661–666). Google Scholar
  53. Skudlarski, P., Constable, R.T., & Gore, J.C. (1999). ROC analysis of statistical methods used in functional MRI: individual subjects. NeuroImage, 9, 311–329. CrossRefPubMedGoogle Scholar
  54. Smith, S., Jenkinson, M., Beckmann, C., Miller, K., & Woolrich, M. (2007). Meaningful design and contrast estimability in FMRI. NeuroImage, 34, 127–136. CrossRefPubMedGoogle Scholar
  55. Wager, T.D., & Nichols, T.E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. NeuroImage, 18, 293–309. CrossRefPubMedGoogle Scholar
  56. Wager, T.D., Vazquez, A., Hernandez, L., & Noll, D.C. (2005). Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 25, 206–218. CrossRefPubMedGoogle Scholar
  57. Worsley, K.J. (2005). Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis. NeuroImage, 26, 635–641. CrossRefPubMedGoogle Scholar
  58. Worsley, K.J., & Friston, K.J. (1995). Analysis of fMRI time-series revisited-again. NeuroImage, 2, 173–181. CrossRefPubMedGoogle Scholar
  59. Wüstenberg, T., Giesel, F.L., & Strasburger, H. (2005). Methodische Grundlagen der Optimierung funktioneller MR-Experimente. Radiologe, 45, 99–112. CrossRefPubMedGoogle Scholar
  60. Zarahn, E., & Friston, K.J. (2002). Some limit results for efficiency in stochastic fMRI designs. Biometrical Journal, 44, 496–509. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2010

Authors and Affiliations

  • Bärbel Maus
    • 1
    Email author
  • Gerard J. P. van Breukelen
    • 2
  • Rainer Goebel
    • 3
  • Martijn P. F. Berger
    • 1
  1. 1.Faculty of Health, Medicine and Life Sciences, Department of Methodology and StatisticsMaastricht UniversityMaastrichtNetherlands
  2. 2.Faculty of Psychology and Neuroscience, Department of Methodology and StatisticsMaastricht UniversityMaastrichtNetherlands
  3. 3.Faculty of Psychology and Neuroscience, Department of Cognitive NeuroscienceMaastricht UniversityMaastrichtNetherlands

Personalised recommendations