Psychometrika

, Volume 75, Issue 2, pp 243–248 | Cite as

Ensuring Positiveness of the Scaled Difference Chi-square Test Statistic

Theory and Methods

Abstract

A scaled difference test statistic \(\tilde{T}{}_{d}\) that can be computed from standard software of structural equation models (SEM) by hand calculations was proposed in Satorra and Bentler (Psychometrika 66:507–514, 2001). The statistic \(\tilde{T}_{d}\) is asymptotically equivalent to the scaled difference test statistic \(\bar{T}_{d}\) introduced in Satorra (Innovations in Multivariate Statistical Analysis: A Festschrift for Heinz Neudecker, pp. 233–247, 2000), which requires more involved computations beyond standard output of SEM software. The test statistic \(\tilde{T}_{d}\) has been widely used in practice, but in some applications it is negative due to negativity of its associated scaling correction. Using the implicit function theorem, this note develops an improved scaling correction leading to a new scaled difference statistic \(\bar{T}_{d}\) that avoids negative chi-square values.

Keywords

moment-structures goodness-of-fit test chi-square difference test statistic chi-square distribution nonnormality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentler, P.M. (2008). EQS 6 structural equations program manual. Encino: Multivariate Software. Google Scholar
  2. Bentler, P.M., Satorra, A., & Yuan, K.-H. (2009). Smoking and cancers: case-robust analysis of a classic data set. Structural Equation Modeling, 16, 382–390. CrossRefPubMedGoogle Scholar
  3. Bollen, K.A., & Curran, P.J. (2006). Latent curve models: a structural equation perspective. New York: Wiley. Google Scholar
  4. Bonett, D.G., Woodward, J.A., & Randall, R.L. (2002). Estimating p-values for Mardia’s coefficients of multivariate skewness and kurtosis. Computational Statistics, 17, 117–122. CrossRefGoogle Scholar
  5. Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83. PubMedGoogle Scholar
  6. Grace, J.B. (2006). Structural equation modeling and natural systems. New York: Cambridge University Press. CrossRefGoogle Scholar
  7. Satorra, A. (1989). Alternative test criteria in covariance structure analysis: a unified approach. Psychometrika, 54, 131–151. CrossRefGoogle Scholar
  8. Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In D.D.H. Heijmans & D.S.G. Pollock, A. Satorra (Eds.), Innovations in multivariate statistical analysis: a festschrift for Heinz Neudecker (pp. 233–247). Dordrecht: Kluwer Academic. Google Scholar
  9. Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C.C. Clogg (Eds.) Latent variables analysis: applications for developmental research (pp. 399–419). Thousand Oaks: Sage. Google Scholar
  10. Satorra, A., & Bentler, P.M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507–514. CrossRefGoogle Scholar
  11. Satorra, A., & Bentler, P.M. (2008). Ensuring positiveness of the scaled difference chi-square test statistic. Department of Statistics, UCLA Department of Statistics Preprint. http://repositories.cdlib.org/uclastat/papers/2008010905.
  12. Yuan, K.-H., & Bentler, P.M. (2007). Structural equation modeling. In C.R. Rao & S. Sinharay (Eds.) Handbook of statistics 26: Psychometrics (pp. 297–358). Amsterdam: North-Holland. Google Scholar

Copyright information

© The Psychometric Society 2009

Authors and Affiliations

  1. 1.Department of Economics and BusinessUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Department of PsychologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations