Skip to main content
Log in

Reliability of Summed Item Scores Using Structural Equation Modeling: An Alternative to Coefficient Alpha

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript


A method is presented for estimating reliability using structural equation modeling (SEM) that allows for nonlinearity between factors and item scores. Assuming the focus is on consistency of summed item scores, this method for estimating reliability is preferred to those based on linear SEM models and to the most commonly reported estimate of reliability, coefficient alpha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Bentler, P.M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74, doi:10.1007/s11336-008-9100-1.

  • Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Curran, P.J., West, S.G., & Finch, J.F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.

    Article  Google Scholar 

  • DiStefano, C. (2002). The impact of categorization with confirmatory factor analysis. Structural Equation Modeling, 9, 327–346.

    Article  Google Scholar 

  • Feldt, L.S., & Brennan, R.L. (1989). Reliability. In R.L. Linn (Ed.), Educational measurement. (3rd ed.). (pp. 105–146). New York: Macmillan.

    Google Scholar 

  • Finney, S., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G.R. Hancock & R.O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Greenwich: Information Age.

    Google Scholar 

  • Flora, D.B., & Curran, P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.

    Article  PubMed  Google Scholar 

  • Gorsuch, R.L. (1983). Factor analysis. Hillsdale: Erlbaum.

    Google Scholar 

  • Green, S.B. (1983). Identifiability of spurious factors using linear factor analysis with binary items. Applied Psychological Measurement, 7, 139–147.

    Article  Google Scholar 

  • Green, S.B., Akey, T.M., Fleming, K.K., Hershberger, S.L., & Marquis, J.G. (1997). Effect of the number of scale points on chi-square fit indices in confirmatory factor analysis. Structural Equation Modeling, 4, 108–120.

    Article  Google Scholar 

  • Green, S.B., & Hershberger, S.L. (2000). Correlated errors in true score models and their effect on coefficient alpha. Structural Equation Modeling, 7, 251–270.

    Article  Google Scholar 

  • Green, S.B., & Yang, Y. (2009). Commentary on coefficient alpha: a cautionary tale. Psychometrika, 74, doi:10.1007/s11336-008-9098-4.

  • Jöreskog, K.G. (1971). Statistical analysis of sets of congeneric test. Psychometrika, 36, 109–133.

    Article  Google Scholar 

  • Lissitz, R.W., & Green, S.B. (1975). Effect of the number of scale points on reliability: A Monte Carlo approach. Journal of Applied Psychology, 60, 10–13.

    Article  Google Scholar 

  • Lozano, L.M., García-Cueto, E., & Muñiz, J. (2008). Effect of the number of response categories on the reliability and validity of rating scales. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 4, 73–479.

    Article  Google Scholar 

  • Maydeu-Olivares, A., Coffman, D.L., & Hartmann, W.M. (2007). Asymptotically distribution-free (ADF) interval estimation of coefficient alpha. Psychological Methods, 12(2), 157–176.

    Article  PubMed  Google Scholar 

  • McDonald, R.P. (1999). Test theory: A unified approach. Hillsdale: Erlbaum.

    Google Scholar 

  • McDonald, R.P., & Ahlawat, K.S. (1974). Difficulty factors in binary data. British Journal of Mathematical and Statistical Psychology, 27, 82–99.

    Google Scholar 

  • Miller, M.B. (1995). Coefficient Alpha: A basic introduction from the perspectives of classical test theory and structural equation modeling. Structural Equation Modeling, 2, 255–273.

    Article  Google Scholar 

  • Muthén, L.K., & Muthén, B.O. (2008). Mplus user’s guide (5th ed.). Los Angeles: Authors.

    Google Scholar 

  • Raykov, T., & Shrout, P. (2002). Reliability of scales with general structure: Point and interval estimation using a structural equation modeling approach. Structural Equation Modeling, 9, 195–212.

    Article  Google Scholar 

  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika (to be published in the March).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Samuel B. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, S.B., Yang, Y. Reliability of Summed Item Scores Using Structural Equation Modeling: An Alternative to Coefficient Alpha. Psychometrika 74, 155–167 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: