Skip to main content
Log in

A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Multidimensional scaling (MDS) models for the analysis of dominance data have been developed in the psychometric and classification literature to simultaneously capture subjects’ preference heterogeneity and the underlying dimensional structure for a set of designated stimuli in a parsimonious manner. There are two major types of latent utility models for such MDS models that have been traditionally used to represent subjects’ underlying utility functions: the scalar product or vector model and the ideal point or unfolding model. Although both models have been widely applied in various social science applications, implicit in the assumption of such MDS methods is that all subjects are homogeneous with respect to their underlying utility function; i.e., they all follow a vector model or an ideal point model. We extend these traditional approaches by presenting a Bayesian MDS model that combines both the vector model and the ideal point model in a generalized framework for modeling metric dominance data. This new Bayesian MDS methodology explicitly allows for mixtures of the vector and the ideal point models thereby accounting for both preference heterogeneity and structural heterogeneity. We use a marketing application regarding physicians’ prescription behavior of antidepressant drugs to estimate and compare a variety of spatial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belk, R.W. (1974). An Exploratory Assessment of Situational Effects in Buyer Behavior. Journal of Marketing Research, 11, 156–163.

    Article  Google Scholar 

  • Belk, R.W. (1975). Situational Variables and Consumer Behavior. Journal of Consumer Research, 2(3), 157–164.

    Article  Google Scholar 

  • Belk, R.W. (1979). A Free Response Approach to Developing Product-Specific Taxonomies. In A.D. Shocker (Ed.), Analytical Approaches to Product and Marketing Planning. Cambridge: Marketing Science Institute.

    Google Scholar 

  • Berndt, E.R., Cockburn, I.M., & Griliches, Z. (1996). Pharmaceutical Innovations and Market Dynamics: Tracking Effects on Price Indexes for Antidepressant Drugs. In Brookings Papers on Economic Activity, Microeconomics (pp. 133–199). Brooking: Brookings Institution Press.

    Google Scholar 

  • Bettman, J.R., Luce, M.F., & Payne, J.W. (1998). Constructive Consumer Choice Processes. Journal of Consumer Research, 25(3), 187–217.

    Article  Google Scholar 

  • Bradlow, E.T., & Schmittlein, D.C. (2000). The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines. Marketing Science, 19(1), 43–62.

    Article  Google Scholar 

  • Busing, F.M.T.A., Groenen, P.J.K., & Heiser, W.J. (2005). Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation. Psychometrika, 70(1), 71–98.

    Article  Google Scholar 

  • Carroll, J.D. (1972). Individual Differences and Multidimensional Scaling. In R.N. Shepard, A.K. Romney, & S.B. Nerlove (Eds.), Multidimensional Scaling; Theory and Applications in the Behavioral Sciences. New York: Seminar Press.

    Google Scholar 

  • Chib, S. (2002). Markov Chain Monte Carlo Methods. In S.J. Press (Ed.), Subjective and Objective Bayesian Statistics (2nd edn., pp. 119–171). New York: Wiley.

    Google Scholar 

  • Consumer Reports. (2005). Best Buy Drugs: Antidepressants.

  • Coombs, C.H. (1964). A Theory of Data. New York: Wiley.

    Google Scholar 

  • DeSarbo, W.S., & Carroll, J.D. (1985). Three-Way Metric Unfolding via Alternating Weighted Least Squares. Psychometrika, 50(3), 275–300.

    Article  Google Scholar 

  • DeSarbo, W.S., & Cho, J. (1989). A Stochastic Multidimensional Scaling Vector Threshold Model for the Spatial Representation of Pick ‘Any/N’ Data. Psychometrika, 54, 105–129.

    Article  Google Scholar 

  • DeSarbo, W.S., & Rao, V.R. (1984). GENFOLD2: A Set of Models and Algorithms for the GENeral UnFOLDing Analysis of Preference/Dominance Data. Journal of Classification, 2, 147–168.

    Article  Google Scholar 

  • DeSarbo, W.S., & Rao, V.R. (1986). A Constrained Unfolding Methodology for Product Positioning. Marketing Science, 5(1), 1–19.

    Article  Google Scholar 

  • DeSarbo, W.S., Manrai, A.K., & Manrai, L.A. (1994). Latent Class Multidimensional Scaling: A Review of Recent Developments in the Marketing and Psychometric Literature. In R.P. Bagozzi (Ed.), Advanced Methods of Marketing Research (pp. 190–222). Cambridge: Blackwell.

    Google Scholar 

  • DeSarbo, W.S., Young, M.R., & Rangaswamy, A. (1997). A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research. Journal of Marketing Research, 34, 499–516.

    Article  Google Scholar 

  • DeSarbo, W.S., Kim, Y., Wedel, M., & Fong, D.K.H. (1998). A Bayesian Approach to the Spatial Representation of Market Structure from Consumer Choice Data. European Journal of Operational Research, 111, 285–305.

    Article  Google Scholar 

  • DeSarbo, W.S., Kim, Y., & Fong, D. (1999). A Bayesian Multidimensional Scaling Procedure for the Spatial Analysis of Revealed Choice Data. Journal of Econometrics, 89, 79–108.

    Article  Google Scholar 

  • DeSarbo, W.S., Fong, D.K.H., Liechty, J.C., & Coupland, J.C. (2005). Evolutionary Preferences/Utility Functions: A Dynamic Perspective. Psychometrika, 70(1), 179–202.

    Article  Google Scholar 

  • Deun, K.V., Groenen, P.J.F., Heiser, W.J., Busing, F.M.T.A., & Delbeke, L. (2005). Interpreting Degenerate Solutions in Unfolding by Use of the Vector Model and the Compensatory Distance Model. Psychometrika, 70(1), 45–69.

    Article  Google Scholar 

  • Diebolt, J., & Robert, C.P. (1994). Estimation of Finite Mixture Distributions through Bayesian Sampling. Journal of the Royal Statistical Society. Series B (Methodological), 56(2), 363–375.

    Google Scholar 

  • Gelfand, A.E., & Smith, A.F.M. (1990). Sampling-based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398–409.

    Article  Google Scholar 

  • Gelman, A., Gilks, W.R., & Roberts, G.O. (Eds.) (1996). Efficient Metropolis Jumping Rules (Vol. 5). Oxford: Oxford University Press.

    Google Scholar 

  • Gilbride, T.J., & Allenby, G.M. (2004). A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules. Marketing Science, 23(3), 391–406.

    Article  Google Scholar 

  • Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Introducing Markov Chain Monte Carlo. In W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 1–19). London: Chapman & Hall.

    Google Scholar 

  • Green, P.J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika, 82(4), 711–732.

    Article  Google Scholar 

  • Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended PARAFAC model. In H.G. Law & C.W. Snyder Jr. (Eds.), Research Methods for Multimode Data Analysis (pp. 216–284). New York: Praeger.

    Google Scholar 

  • Harshman, R.A., & Lundy, M.E. (1985). The Preprocessing Controversy: An Exchange of Papers between Kroonenberg, Harshman and Lundy. University of Western Ontario, Department of Psychology.

  • Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57(1), 97–109.

    Article  Google Scholar 

  • Jedidi, K., & Kohli, R. (2005). Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers. Journal of Marketing Research, 42, 483–494.

    Article  Google Scholar 

  • Kamakura, W.A., Kim, B.D., & Lee, J. (1996). Modeling Preference and Structural Heterogeneity in Consumer Choice. Marketing Science, 15(2), 152–172.

    Article  Google Scholar 

  • Karasu, T.B., Gelenberg, A., Merriam, A., & Wang, P. (2006). Practice Guideline for the Treatment of Patients With Major Depressive Disorder: The American Psychiatric Association.

  • Kass, R.E., & Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795.

    Article  Google Scholar 

  • Liechty, J.C., Fong, D.K.H., & DeSarbo, W.S. (2005). Dynamic Models with Individual Level Heterogeneity: Applied to Evolution During Conjoint Studies. Marketing Science, 24(2), 285–293.

    Article  Google Scholar 

  • Lopes, H.F. (2000). Bayesian Analysis in Latent Factor and Longitudinal Models. Durham: Duke Univ. Press.

    Google Scholar 

  • Menza, M. (2006). STAR*D: The Results Begin to Roll in. American Journal of Psychiatry, 163, 1123.

    Article  PubMed  Google Scholar 

  • Metropolis, M., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equations of State Calculations by Fast Computing Machine. Journal of Chemical Physics, 21, 1087–1091.

    Article  Google Scholar 

  • Newton, M.A., & Raftery, A.E. (1994). Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56(1), 3–48.

    Google Scholar 

  • Oh, M.S., & Raftery, A.E. (2001). Bayesian Multidimensional Scaling and Choice of Dimension. Journal of the American Statistical Association, 96(455), 1031–1044.

    Article  Google Scholar 

  • Petty, R.E., & Cacioppo, J.T. (1986). Communication and Persuasion: Central and Peripheral Routes to Attitude Change. New York: Springer.

    Google Scholar 

  • Richardson, S., & Green, P.J. (1997). On Bayesian Analysis of Mixtures with an Unknown Number of Components. Journal of the Royal Statistical Society. Series B (Methodological), 59(4), 731–792.

    Article  Google Scholar 

  • Rust, R., Simester, D., Brodie, R., & Nilakant, V. (1995). Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combination of Criteria. Management Science, 41(2), 322–333.

    Article  Google Scholar 

  • Slater, P. (1960). The Analysis of Personal Preference. British Journal of Statistical Psychology, 13, 119–135.

    Google Scholar 

  • Simon, H.A. (1955). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69(February), 99–118.

    Article  Google Scholar 

  • Simon, H.A. (1990). Invariance of Human Behavior. Annual Review of Psychology, 41, 1–19.

    Article  PubMed  Google Scholar 

  • Srivastava, R.K., Alpert, M.I., & Shocker, A.D. (1984). A Customer-Oriented Approach for Determining Market Structures. Journal of Marketing, 48(2), 32–45.

    Article  Google Scholar 

  • Tanner, M.A., & Wong, W.H. (1987). The Calculation of Posterior Distributions by Data Augmentation. Journal of the American Statistical Association, 82(398), 528–540.

    Article  Google Scholar 

  • Tucker, L.R. (1960). Intra-Individual and Inter-Individual Multidimensionality. In H. Gulliksen & S. Messick (Eds.), Psychological Scaling: Theory and Applications (pp. 155–167). New York: Wiley.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1991). Loss Aversion in Riskless Choice: A Reference-Dependent Model. Quarterly Journal of Economics, 106(November), 1039–1062.

    Article  Google Scholar 

  • Wedel, M., & DeSarbo, W.S. (1996). An Exponential-Family Multidimensional Scaling Mixture Methodology. Journal of Business & Economic Statistics, 14(4), 447–459.

    Article  Google Scholar 

  • Wedel, M., & Kamakura, W. (2000). Market Segmentation: Conceptual and Methodological Foundations. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Young, F.W. (1987). Multidimensional Scaling: History, Theory, and Applications. Lawrence: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonwook Park.

Additional information

The authors thank Arvind Rangaswamy, Duncan K.H. Fong, and Joseph Schafer for their constructive comments on an earlier version of this manuscript. The helpful suggestions of the Editor, the AE, and two anonymous reviewers are also gratefully acknowledged.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., DeSarbo, W.S. & Liechty, J. A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity. Psychometrika 73, 451–472 (2008). https://doi.org/10.1007/s11336-008-9064-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9064-1

Keywords

Navigation