Skip to main content

Reducing Measurement Error in Student Achievement Estimation

Abstract

The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed for regression with covariate measurement error. In particular, the focus is on ordinal scaled grades, using the SIMEX method for measurement error correction. The result is a measure comparable across subjects with smaller measurement error variance. An empirical application illustrates the method.

This is a preview of subscription content, access via your institution.

References

  1. Aitkin, M., & Rocci, R. (2002). A general maximum likelihood analysis of measurement error in generalized linear models. Statistics and Computing, 12, 163–74.

    Article  Google Scholar 

  2. Barndorff-Nielsen, O.E., & Cox, D.R. (1994). Inference and asymptotics. London: Chapman and Hall.

    Google Scholar 

  3. Bartholomew, D.J., & Knott, M. (1999). Latent variable models and factor analysis. London: Edward Arnold.

    Google Scholar 

  4. Birnbaum, A. (1968). Test scores, sufficient statistics, and the information structures of tests. In F.M. Lord & M.R. Novick (Eds.), Statistical theories of mental test scores. Reading: Addison-Wesley.

    Google Scholar 

  5. Greene, W.F., & Cai, J. (2004). Measurement error in covariates in the marginal hazards model for multivariate failure time data. Biometrics, 60, 987–96.

    Article  PubMed  Google Scholar 

  6. Carroll, R.J., Küchenhoff, H., Lombard, F., & Stefanski, L.A. (1996). Asymptotics for the SIMEX estimator in nonlinear measurement error models. Journal of the American Statistical Association, 91, 242–50.

    Article  Google Scholar 

  7. Carroll, R.J., Ruppert, D., Stefanski, L.A., & Crainiceanu, C. (2006). Measurement error in nonlinear models (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  8. Casella, G., & Berger, R.L. (2002). Statistical inference (2nd ed.). Pacific Grove: Duxbury Press.

    Google Scholar 

  9. Chesher, A. (1991). The effect of measurement error. Biometrika, 78, 451–62.

    Article  Google Scholar 

  10. Cook, J., & Stefanski, L.A. (1994). A simulation extrapolation method for parametric measurement error models. Journal of the American Statistical Association, 89, 1314–328.

    Article  Google Scholar 

  11. Fuller, W.A. (1987). Measurement error models. New York: Wiley.

    Book  Google Scholar 

  12. Goldstein, H., & Thomas, S. (1996). Using examination results as indicators of school and college performance. Journal of the Royal Statistical Society Series A, 159, 149–63.

    Google Scholar 

  13. Good, F. (1988). A method of moderation of school-based assessments: some statistical considerations. The Statistician, 37, 33–9.

    Article  Google Scholar 

  14. Hoijtink, H., & Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments and applications. New York: Springer.

    Google Scholar 

  15. Levin-Koh, S.C., & Amemiya, Y. (2003). Heteroscedastic factor analysis. Biometrika, 90, 85–7.

    Article  Google Scholar 

  16. Molenaar, I.W. (1995). Some background for item response theory and the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments and applications. New York: Springer.

    Google Scholar 

  17. Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators. Psychometrika, 49, 115–32.

    Article  Google Scholar 

  18. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  19. Shi, J.Q., & Lee, S.Y. (2000). Latent variable models with mixed continuous and polytomous data. Journal of the Royal Statistical Society Series B, 62, 77–7.

    Article  Google Scholar 

  20. Snijders, T., & Bosker, R. (1999). An introduction to basic and advanced multilevel modeling. London: Sage.

    Google Scholar 

  21. Stefanski, L.A., & Cook, J.R. (1995). Simulation-extrapolation: The measurement error jackknife. Journal of the American Statistical Association, 90, 1247–256.

    Article  Google Scholar 

  22. Tekwe, C.D., Carter, R.L., Ma, C.X., Algina, J., Lucas, M.E., Roth, J., Ariet, M., Fisher, T., & Resnick, M.B. (2004). An empirical comparison of statistical models for value-added assessment of school performance. Journal of Educational and Behavioral Statistics, 29, 11–6.

    Article  Google Scholar 

  23. Wang, N., Lin, X., Gutierrez, R.G., & Carroll, R.J. (1998). Bias analysis and SIMEX approach in generalized linear mixed measurement error models. Journal of the American Statistical Association, 93, 249–61.

    Article  Google Scholar 

  24. Woodhouse, G., Yang, M., Goldstein, H., & Rasbash, J. (1996). Adjusting for measurement error in multilevel analysis. Journal of the Royal Statistical Society Series A, 159, 201–12.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michela Battauz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Battauz, M., Bellio, R. & Gori, E. Reducing Measurement Error in Student Achievement Estimation. Psychometrika 73, 289 (2008). https://doi.org/10.1007/s11336-007-9050-z

Download citation

Keywords

  • maximum likelihood estimation
  • measurement error
  • Rasch model
  • teacher grade
  • SIMEX