Skip to main content
Log in

A Bayesian Semiparametric Latent Variable Model for Mixed Responses

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other covariates as well as spatial effects. Full Bayesian modelling is based on penalized spline and Markov random field priors and is performed by computationally efficient Markov chain Monte Carlo (MCMC) methods. We apply our approach to a German social science survey which motivated our methodological development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, O., & West, M. (2000). Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. Journal of Business and Economic Statistics 18, 338–357.

    Article  Google Scholar 

  • Albert, J.H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679.

    Article  Google Scholar 

  • Arminger, G., & Muthén, B.O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis–Hastings algorithm. Psychometrika, 63, 271–300.

    Article  Google Scholar 

  • BayesX (2005). Software for Bayesian inference by A. Brezger, T. Kneib, & S. Lang. URL: http://www.stat.uni-muenchen.de/~bayesx/bayesx.html

  • Besag, J.E., York, J., & Mollie, A. (1991). Bayesian image restoration with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics, 43, 1–19.

    Article  Google Scholar 

  • Brezger, A., & Lang, S. (2006). Generalized structured additive regression based on Bayesian P-splines. Computational Statistics and Data Analysis, 50, 967–991.

    Article  Google Scholar 

  • Cowles, M.K. (1996). Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statistics and Computing, 6, 101–111.

    Article  Google Scholar 

  • Fahrmeir, L., & Lang, S. (2001). Bayesian semiparametric regression analysis of multicategorical time-space data. Annals of the Institute of Statistical Mathematics, 53, 10–20.

    Article  Google Scholar 

  • Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models. New York: Springer.

    Google Scholar 

  • Fahrmeir, L., Kneib, T., & Lang, S. (2004). Penalized structured additive regression of space–time data: A Bayesian perspective. Statistica Sinica, 14, 731–761.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analysis (2nd ed.). London: Chapman & Hall.

    Google Scholar 

  • Geweke, J., & Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. Review of Financial Studies, 9, 557–587.

    Article  Google Scholar 

  • Hastie, T., & Tibshirani, R.J. (1990). Generalized additive models. London: Chapman & Hall.

    Google Scholar 

  • Hastie, T., & Tibshirani, R.J. (1993). Varying-coefficient models. Journal of the Royal Statistical Society Series B, 55, 757–796.

    Google Scholar 

  • Hobert, J.P., & Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the American Statistical Association, 91, 1461–1473.

    Article  Google Scholar 

  • Holmes, C., & Held, L. (2005). Bayesian auxiliary variable models for binary and multinomial regression. Statistical Modelling, 5, 187–199.

    Article  Google Scholar 

  • Johnson, V.E., & Albert, J.H. (1999). Ordinal data modeling. New York: Springer.

    Google Scholar 

  • Jöreskog, K.G., & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631–639.

    Article  Google Scholar 

  • Kammann, E.E., & Wand, M.P. (2003). Geoadditive models. Journal of the Royal Statistical Society Series C, 52, 1–18.

    Article  Google Scholar 

  • Lang, S., & Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183–912.

    Article  Google Scholar 

  • Lee, S.-Y., & Song, X.-Y. (2004). Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data. British Journal of Mathematical and Statistical Psychology, 57, 131–150.

    Article  PubMed  Google Scholar 

  • Lee, S.-Y., & Zhu, H.-T. (2000). Statistical analysis of nonlinear structural equation models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 53, 209–232.

    Article  PubMed  Google Scholar 

  • Liu, J.S., & Sabatti, C. (2000). Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika, 87, 353–369.

    Article  Google Scholar 

  • Lopes, H.F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41–47.

    Google Scholar 

  • Lu, Y., & Wang, X. (2006). A hierarchical Bayesian framework for item response theory models with applications in ideal point estimation. Technical Report, Harvard University, Institute for Quantitative Social Science.

  • MCMCPack (2005). R-package for Markov chain Monte Carlo by A.D. Martin & K.M. Quinn. URL: http://mcmcpack.wustl.edu/

  • Moustaki, I. (2003). A general class of latent variable models for ordinal manifest variables with covariate effects on the manifest and latent variables. British Journal of Mathematical and Statistical Psychology, 56, 337–357.

    Article  PubMed  Google Scholar 

  • Moustaki, I., & Steele, F. (2005). Latent variable models for mixed categorical and survival responses, with an application to fertility preferences and family planning in Bangladesh. Statistical Modeling, 5, 327–342.

    Article  Google Scholar 

  • Moustaki, I., Jöreskog, K.G., & Mavridis, D. (2004). Factor models for ordinal variables with covariate effects on the manifest and latent variables: A comparison of LISREL and IRT approaches. Structural Equation Modeling, 11, 487–513.

    Article  Google Scholar 

  • Muthén, B.O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557–585.

    Article  Google Scholar 

  • O’Brien, S.M., & Dunson, D.B. (2004). Bayesian multivariate logistic regression. Biometrics, 60, 739–746.

    Article  PubMed  Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999a). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.

    Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342–366.

    Google Scholar 

  • Quinn, K.M. (2004). Bayesian factor analysis for mixed ordinal and continuous responses. Political Analysis, 12, 338–353.

    Article  Google Scholar 

  • Raach, A. (2005). A Bayesian semiparametric latent variable model for binary, ordinal and continuous response. Dissertation, available from edoc.ub.uni-muenchen.de

  • Rue, H. (2001). Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical Society Series B, 63, 325–338.

    Article  Google Scholar 

  • Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and applications. London: Chapman & Hall.

    Google Scholar 

  • Rupp, A.A., Dey, D.K., & Zumbo, B.D. (2004). To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11, 424–451.

    Article  Google Scholar 

  • Sahu, S.K. (2002). Bayesian estimation and model choice in Item Response Model. Journal of Statistical Computation and Simulation, 72, 217–232.

    Article  Google Scholar 

  • Sammel, M.D., Ryan, L.M., & Legler, J.M. (1997). Latent variable models for mixed discrete and continuous outcomes. Journal of the Royal Statistical Society Series B, 59, 667–678.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling. London: Chapman and Hall.

    Google Scholar 

  • Song, X.-Y., & Lee, S.-Y. (2005). Statistical analysis of a two-level nonlinear structural equation model with fixed covariates. Journal of Educational and Behavioral Statistics, 30, 1–16.

    Article  Google Scholar 

  • Sun, D., Tsutakawa, R.K., & He, Z. (2001). Propriety of posteriors with improper priors in hierarchical linear mixed models. Statistica Sinica, 11, 77–85.

    Google Scholar 

  • Zhu, J., Eickhoff, J.C., & Yan, P. (2005). Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics, 61, 674–683.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Fahrmeir.

Additional information

We thank the editor and the referees for their constructive and helpful comments, leading to substantial improvements of a first version, and Sven Steinert for computational assistance. Partial financial support from the SFB 386 “Statistical Analysis of Discrete Structures” is also acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrmeir, L., Raach, A. A Bayesian Semiparametric Latent Variable Model for Mixed Responses. Psychometrika 72, 327–346 (2007). https://doi.org/10.1007/s11336-007-9010-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-007-9010-7

Keywords

Navigation