Skip to main content
Log in

Copula Functions for Residual Dependency

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Most item response theory models are not robust to violations of conditional independence. However, several modeling approaches (e.g., conditioning on other responses, additional random effects) exist that try to incorporate local item dependencies, but they have some drawbacks such as the nonreproducibility of marginal probabilities and resulting interpretation problems. In this paper, a new class of models making use of copulas to deal with local item dependencies is introduced. These models belong to the bigger class of marginal models in which margins and association structure are modeled separately. It is shown how this approach overcomes some of the problems associated with other local item dependency models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csáki (Eds.), 2nd international symposium on information theory (pp. 267–281). Armenia, USSR: Tsahkadsov.

  • Ashford, J.R., & Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535–546.

    Article  PubMed  Google Scholar 

  • Bahadur, R. (1961). A representation of the joint distribution of responses to n dichotomous items. In H. Solomon (Ed.), Studies in item analysis and prediction (pp. 158–168). Palo Alto, CA: Standford University Press.

  • Bell, R.C., Pattison, P.E., & Withers, G.P. (1988). Conditional independence in a clustered item test. Applied Psychological Measurement, 12, 15–16.

    Article  Google Scholar 

  • Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.

    Google Scholar 

  • Clayton, D.G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.

    Article  Google Scholar 

  • Cook, R.D., & Johnson, M.E. (1981). A family of distributions to modeling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society, Series B, 43, 210–218.

    Google Scholar 

  • Cox, D.R. (1972). The analysis of multivariate binary data. Applied Statistics, 21, 113–120.

    Article  Google Scholar 

  • De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.

    Google Scholar 

  • Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large-scale hands-on science performance assessment. Journal of Educational Measurement, 36, 119–140.

    Article  Google Scholar 

  • Fitzmaurice, G.M., Laird, N.M., & Rotnitzky, A.G. (1993). Regression models for discrete longitudinal responses. Statistical Science, 8, 284–309.

    Article  Google Scholar 

  • Frank, M.J. (1979). On the simultaneous associativity of F(x,y) and x+y-F(x,y). Aequationes Mathematica, 19, 194–226.

    Article  Google Scholar 

  • Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université Lyon, Série 3, 14, 53–57.

    Google Scholar 

  • Frees, A.W., & Valdez, E.A. (1998). Understanding relationships using copulas. Actuarial Research Clearing House, 1, 5–15.

    Google Scholar 

  • Genest, C., & MacKay, J. (1986). Copules archimédiennes et familles de lois bi-dimensionelles dont les marges sont donées. Canadian Journal of Statistics, 14, 145–159.

    Article  Google Scholar 

  • Hoeffding, W. (1940). Masstabinvariante Korrelations-Theorie. Schriften des Matematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin (5:3, pp. 179–223). [Reprinted as Scale-invariant correlation theory in the Collected Works of Wassily Hoeffding, N.I. Fischer, & P.K. Sen (Eds.), New York: Springer].

    Google Scholar 

  • Holland, P.W. (1990). The Dutch identity: A new tool for the study of item response models. Psychometrika, 55, 5–18.

    Article  Google Scholar 

  • Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. Annals of Statistics, 14, 1523–1543.

    Article  Google Scholar 

  • Hoskens, M., & De Boeck, P. (1997). A parametric model for local item dependencies among test items. Psychological Methods, 2, 261–277.

    Article  Google Scholar 

  • Ip, E. (2000). Adjusting for information inflation due to local dependence in moderately large item clusters. Psychometrika, 65, 73–81.

    Article  Google Scholar 

  • Ip, E. (2001). Testing for local dependence in dichotomous and polutomous item response models. Psychometrika, 66, 109–132.

    Article  Google Scholar 

  • Ip, E. (2002). Locally dependent latent trait model and the Dutch identity revisited. Psychometrika, 67, 367–386.

    Article  Google Scholar 

  • Ip, E., Wang, Y.J., De Boeck, P., & Meulders, M. (2004). Locally dependent latent trait models for polytomous responses. Psychometrika, 69, 191–216.

    Article  Google Scholar 

  • Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46, 262–282.

    Article  Google Scholar 

  • Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

    Google Scholar 

  • Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255–278.

    Article  Google Scholar 

  • Kotz, S., Balakrishnan, N., & Johnson, N. (2000). Continuous multivariate distributions (Vol. 1). New York: Wiley.

    Book  Google Scholar 

  • Liang, K.-Y., Zeger, S.L., & Qaqish, B. (1992). Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B, 54, 3–10.

    Google Scholar 

  • Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of National Cancer Institute, 22, 719–748.

    Google Scholar 

  • Masters, G.N. (1988). Item discrimination: When more is worse. Journal of Educational Measurement, 25, 15–19.

    Article  Google Scholar 

  • McCullagh, P. (1989). Models for discrete multivariate responses. Bulletin of the International Statistics Institute, 53, 407–418.

    Google Scholar 

  • Meester, S.G. (1991). Methods for clustered categorical data. Unpublished doctoral dissertation. University of Waterloo, Canada.

  • Molenberghs, G., & Verbeke, G. (2005). Models for discrete longitudinal data. New York: Springer.

    Google Scholar 

  • Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill.

    Google Scholar 

  • Nelsen, R.B. (1999). An introduction to copulas. New York: Springer.

    Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Rosenbaum, P.R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435.

    Article  Google Scholar 

  • Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 7.

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Scott, S.L., & Ip, E. (2002). Empirical Bayes and item clustering effects in a latent variable hierarchical model: A case study from the national assessment of educational progress. Journal of the American Statistical Association, 97, 409–419.

    Article  Google Scholar 

  • Self, G.H., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610.

    Article  Google Scholar 

  • Sireci, S.G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. Journal of Educational Measurement, 28, 237–247.

    Article  Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à n dimension et leurs marges. Publications Statistiques Université de Paris, 8, 229–231.

    Google Scholar 

  • Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27, 159–203.

    Article  Google Scholar 

  • Tuerlinckx, F., & De Boeck, P. (2001a). The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. Psychological Methods, 6, 181–195.

    Article  PubMed  Google Scholar 

  • Tuerlinckx, F., & De Boeck, P. (2001b). Non-modeled item interactions lead to distorted discrimination parameters: A case study. Methods of Psychological Research, 6. [Retrieved May 20, 2005 from http://www.mpr-online.de/issue14/art3/Tuerlinckx.pdf].

  • Tuerlinckx, F., & De Boeck, P. (2004). Models for residual dependencies. In P. De Boeck & M. Wilson (Eds.), Explanatory item response models: A generalized linear and nonlinear approach (pp. 289–316). New York: Springer.

    Google Scholar 

  • Vansteelandt, K. (2000). Formal models for contextualized personality psychology. Unpublished doctoral dissertation. K.U. Leuven, Belgium.

  • Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.

    Article  Google Scholar 

  • Yen, W.M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125–145.

    Article  Google Scholar 

  • Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187–213.

    Article  Google Scholar 

  • Zhao, L.P., & Prentice, R.L. (1990). Correlated binary regression using a generalized quadratic model. Biometrics, 77, 642–648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Braeken.

Additional information

The authors wish to thank Yuri Goegebeur and Taoufik Bouezmarni for their helpful suggestions and comments. We are also indebted to the reviewers of this paper, their generous comments and remarks greatly improved the setup and clarity of the presented material. Preparation of this manuscript was supported in part by the Fund for Scientific Research Flanders (FWO) Grant G.0148.04 and by the K.U. Leuven Research Council Grant GOA/2005/04.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeken, J., Tuerlinckx, F. & De Boeck, P. Copula Functions for Residual Dependency. Psychometrika 72, 393–411 (2007). https://doi.org/10.1007/s11336-007-9005-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-007-9005-4

Keywords

Navigation