Skip to main content
Log in

Some Results on Mean Square Error for Factor Score Prediction

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix Γp = Φ1/2ΛpΨp−1ΛpΦ1/2. This matrix increases with the number of observable variables p. A necessary and sufficient condition for mean square convergence of predictors is divergence of the smallest eigenvalue of Γp or, equivalently, divergence of signal-to-noise (Schneeweiss & Mathes, 1995). The same condition is necessary and sufficient for convergence to zero of the positive definite MSE differences of factor predictors, convergence to zero of the distance between factor predictors, and convergence to the unit value of the relative efficiencies of predictors. Various illustrations and examples of the convergence are given as well as explicit recommendations on the problem of choosing between the three main factor score predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borg, I., & Groenen, P. (1997). Modern multidimensional scaling. New York: Springer-Verlag.

    Book  Google Scholar 

  • DeSarbo, W.S., Johnson, M.D., Manrai, A.K., Manrai, L.A., & Edwards, E. A. (1992). TSCALE: A new multidimensional scaling procedure based on Tversky's contrast model. Psychometrika, 57, 43–70.

    Article  Google Scholar 

  • Dzhafarov, E.N. (2002a). Multidimensional Fechnerian scaling: Regular variation version. Journal of Mathematical Psychology, 46, 226–244.

    Article  Google Scholar 

  • Dzhafarov, E.N. (2002b). Multidimensional Fechnerian scaling: Probability-distance hypothesis. Journal of Mathematical Psychology, 46, 352–374.

    Article  Google Scholar 

  • Dzhafarov, E.N. (2002c). Multidimensional Fechnerian scaling: Perceptual separability. Journal of Mathematical Psychology, 46, 564–582.

    Article  Google Scholar 

  • Dzhafarov, E.N. (2002d). Multidimensional Fechnerian scaling: Pairwise comparisons, regular minimality, and nonconstant self-similarity. Journal of Mathematical Psychology, 46, 583–608.

    Article  Google Scholar 

  • Dzhafarov, E.N. (2003a). Thurstonian-type representations for “same—different” discriminations: Deterministic decisions and independent images. Journal of Mathematical Psychology, 47, 208–228.

    Google Scholar 

  • Dzhafarov, E.N. (2003b). Thurstonian-type representations for “same—different” discriminations: Probabilistic decisions and interdependent images.Journal of Mathematical Psychology, 47, 229–243.

    Article  Google Scholar 

  • Dzhafarov, E.N., & Colonius, H. (1999). Fechnerian metrics in unidimensional and multidimensional stimulus spaces. Psychonomic Bulletin and Review, 6, 239–268.

    Article  Google Scholar 

  • Dzhafarov, E.N., & Colonius, H. (2001). Multidimensional Fechnerian scaling: Basics. Journal of Mathematical Psychology, 45, 670–719.

    Article  Google Scholar 

  • Dzhafarov, E.N., & Colonius, H. (2005a). Psychophysics without physics: A purely psychological theory of Fechnerian scaling in continuous stimulus spaces. Journal of Mathematical Psychology, 49, 1–50.

    Article  Google Scholar 

  • Dzhafarov, E.N., & Colonius, H. (2005b). Psychophysics without physics: Extension of Fechnerian scaling from continuous to discrete and discrete-continuous stimulus spaces. Journal of Mathematical Psychology, 49, 125–141.

    Article  Google Scholar 

  • Fechner, G.T. (1860). Elemente der Psychophysik Elements of psychophysics. Leipzig: Breitkopf & Härtel.

    Google Scholar 

  • Indow, T. (1998). Parallel shift of judgment-characteristic curves according to the context in cutaneous and color discrimination. In C.E. Dowling, F.S. Roberts & P. Theuns (Eds.), Recent progress in mathematical psychology (pp. 47–63). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Indow, T., Robertson, A.R., von Grunau, M., & Fielder, G.H. (1992). Discrimination ellipsoids of aperture and simulated surface colors by matching and paired comparison. Color Research and Applications, 17, 6–23.

    Article  Google Scholar 

  • Izmailov, Ch. A., Dzhafarov, E.N., & Zimachev, M.M. (2001). Luminance discrimination probabilities derived from the frog electroretinogram. In E. Sommerfeld, R. Kompass, & T. Lachmann (Eds.) Fechner Day 2001(pp. 206–211). Lengerich: Pabst Science.

    Google Scholar 

  • Krumhansl, C.L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density. Psychological Review, 85, 445–463.

    Article  Google Scholar 

  • Kruskal, J.B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills, CA: Sage.

    Book  Google Scholar 

  • Rothkopf, E.Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks. Journal of Experimental Psychology, 53, 94–102.

    Article  Google Scholar 

  • Roweis, S.T., & Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.

    Article  Google Scholar 

  • Sankoff, D., & Kruskal, J. (1999). Time warps, string edits, and macromolecules. Stanford, CA: CSLI.

    Google Scholar 

  • Shepard, R.N. (1957). Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space. Psychometrika, 22, 325–345.

    Article  Google Scholar 

  • Shepard, R.N. (1958). Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space. Journal of Experimental Psychology, 55, 509–523.

    Article  Google Scholar 

  • Shepard, R.N., & Carroll, J.D. (1966). Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.), Multivariate analysis (pp. 561–592). New York: Academic Press.

    Google Scholar 

  • Tenenbaum, J.B., de Silva, V., & Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.

    Article  Google Scholar 

  • Thurstone, L.L. (1927). A law of comparative judgments. Psychological Review, 34, 273–286.

    Article  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Article  Google Scholar 

  • Weeks, D.G., & Bentler, P.M. (1982). Restricted multidimensional scaling models for asymmetric proximities. Psychometrika, 47, 201–208.

    Article  Google Scholar 

  • Wish, M. (1967). A model for the perception of Morse code-like signals. Human Factors, 9, 529–540.

    Article  Google Scholar 

  • Zimmer, K., & Colonius, H. (2000). Testing a new theory of Fechnerian scaling: The case of auditory intensity discrimination. Journal of the Acoustical Society of America, 108, 2596.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim P. Krijnen.

Additional information

The author is obliged to Maarten Speekenbrink and Peter van Rijn for their assistance with plotting the figures. In addition, I am obliged to the referees for their stimulating remarks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krijnen, W.P. Some Results on Mean Square Error for Factor Score Prediction. Psychometrika 71, 395–409 (2006). https://doi.org/10.1007/s11336-004-1220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-004-1220-7

Keywords

Navigation