1 Correction to: Innovations in Systems and Software Engineering https://doi.org/10.1007/s11334-022-00445-7

In the original publication of the article, the following corrections have been updated.

2 Introduction

Is:

Dedicated translations from LTL directly to (limit) deterministic [21] and unambiguous [25] automata have been studied.

Should be:

Dedicated translations from LTL directly to (limit-) deterministic [21] and unambiguous [25] automata have been studied.

3 In 3.1.1, Definition 3.3

Is:

Figure 3 is inside Definition 3.3, and breaks a list of items.

Should be:

Figure 3 should be outside of Definition 3.3., e.g., directly following it.

4 In 5.2: Proof of Proposition 5.3

Is:

In NP for limit-det. TELA. We now show that the problem of computing \(\textbf{Pr}_{\mathcal {M}}^{\max }(\mathcal {L}(\mathcal {A})) > 0\) is in NP if TELA \(\mathcal {A} = (Q,\Sigma ,\delta ,I,\alpha )\) is limit-deterministic.

[\(\ldots \)]

Claim. \(\textbf{Pr}^{\max }_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) > 0\) holds iff there exists a reachable end-component \(\mathcal E\) of \(\mathcal {M}\times \mathcal {A}\) such that \({{\,\textrm{atrans}\,}}(\mathcal{E}) \models \alpha \).

[\(\ldots \)]

In P for fin-less limit-det. TELA. If \(\alpha \) is fin-less, then the existence of an end-component \(\mathcal E\) with \({{\,\textrm{atrans}\,}}(\mathcal{E}) \models \alpha \) is equivalent to the existence of a maximal end-component satisfying the same property.

Should be:

In NP for limit-det. TELA. We now show that the problem of computing \(\textbf{Pr}_{\mathcal {M}}^{\max }(\mathcal {L}(\mathcal {A})) > 0\) is in NP if TELA \(\mathcal {A} = (Q,\Sigma ,\delta ,I,\alpha )\) is limit-deterministic.

[\(\ldots \)]

Claim. \(\textbf{Pr}^{\max }_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) > 0\) holds iff there exists a reachable end-component \(\mathcal E\) of \(\mathcal {M}\times \mathcal {A}\) such that \({{\,\textrm{atrans}\,}}(\mathcal{E}) \models \alpha \).

[\(\ldots \)]

In P for fin-less limit-det. TELA. If \(\alpha \) is fin-less, then the existence of an end-component \(\mathcal E\) with \({{\,\textrm{atrans}\,}}(\mathcal{E}) \models \alpha \) is equivalent to the existence of a maximal end-component satisfying the same property.

5 Sec 5.2: between Lemma 5.5 and Lemma 5.6

Is:

[\(\ldots \)] and show that words labeling a loop in the deterministic automaton \(\mathscr {D}_i\) induce a path through the powerset automaton of [\(\ldots \)]

Should be:

[\(\ldots \)] and show that words labeling a loop in the deterministic automaton \(\mathcal {D}_i\) induce a path through the powerset automaton of [\(\ldots \)]

Is:

Recall that we are given a finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\), and to prove the GFM property, we have to provide a scheduler \(\mathfrak {S}'\) such that \(\textrm{Pr}^{\mathfrak {S}}_{\mathcal {M}}(\mathcal {L}(\mathscr {A})) \le \textrm{Pr}^{\mathfrak {S}'}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathscr {A}}}(\Pi _{acc})\). [\(\ldots \)] It stays inside the initial component of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathscr {A}}\) and mimics the action chosen by \(\mathfrak {S}\) until the corresponding path in \(\mathcal {M}_{\mathfrak {S}} \times \mathcal {D}\) reaches an accepting bottom strongly connected component (BSCC) B.

Should be:

Recall that we are given a finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\), and to prove the GFM property, we have to provide a scheduler \(\mathfrak {S}'\) such that \(\textrm{Pr}^{\mathfrak {S}}_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) \le \textrm{Pr}^{\mathfrak {S}'}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}(\Pi _{acc})\). [\(\ldots \)] It stays inside the initial component of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}\) and mimics the action chosen by \(\mathfrak {S}\) until the corresponding path in \(\mathcal {M}_{\mathfrak {S}} \times \mathcal {D}\) reaches an accepting bottom strongly connected component (BSCC) B.

6 Sec 5.2: Lemma 5.6

Is:

$$\begin{aligned} \textrm{Pr}_{s}(\{\pi \mid L(\pi ) \text { is accepted from } (Q',\varnothing ,0) \text { in } \mathfrak {B}_i\bigl \}) = 1. \end{aligned}$$

Should be:

$$\begin{aligned} \textrm{Pr}_{\mathfrak {s}}(\{\pi \mid L(\pi ) \text { is accepted from } (Q',\varnothing ,0) \text { in } \mathfrak {B}_i\bigl \}) = 1. \end{aligned}$$

7 Sec 5.2: Lemma 5.7

Is:

$$\begin{aligned} \mathop {\textrm{Pr}}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}^{\mathfrak {S}'}(\Pi _{acc}) \ge \mathop {\textrm{Pr}}_{\mathcal {M}}^{\mathfrak {S}}(\mathcal {L}(\mathcal {A})) \end{aligned}$$

Should be:

$$\begin{aligned} \textrm{Pr}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}^{\mathfrak {S}'}(\Pi _{acc}) \ge \textrm{Pr}_{\mathcal {M}}^{\mathfrak {S}}(\mathcal {L}(\mathcal {A})) \end{aligned}$$

8 Sec 5.2: Theorem 5.2

Is:

  1. 1.

    For every finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\) there exists a scheduler \(\mathfrak {S}'\) of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}\) such that

    $$\begin{aligned} \mathop {\textrm{Pr}}^{\mathfrak {S}}_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) \le \mathop {\textrm{Pr}}^{\mathfrak {S}'}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}(\Pi _{acc}) \end{aligned}$$
  2. 2.

    For every finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}\) there exists a scheduler \(\mathfrak {S}'\) of \(\mathcal {M}\) such that

    $$\begin{aligned} \mathop {\textrm{Pr}}^{\mathfrak {S}}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}(\Pi _{acc}) \le \mathop {\textrm{Pr}}^{\mathfrak {S}'}_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) \end{aligned}$$

Should be:

  1. 1.

    For every finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\) there exists a scheduler \(\mathfrak {S}'\) of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}\) such that

    $$\begin{aligned} \textrm{Pr}^{\mathfrak {S}}_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) \le \textrm{Pr}^{\mathfrak {S}'}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}(\Pi _{acc}) \end{aligned}$$
  2. 2.

    For every finite memory scheduler \(\mathfrak {S}\) of \(\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}\) there exists a scheduler \(\mathfrak {S}'\) of \(\mathcal {M}\) such that

    $$\begin{aligned} \textrm{Pr}^{\mathfrak {S}}_{\mathcal {M}\times \mathcal {G}^{{\text {GFM}}}_{\mathcal {A}}}(\Pi _{acc}) \le \textrm{Pr}^{\mathfrak {S}'}_{\mathcal {M}}(\mathcal {L}(\mathcal {A})) \end{aligned}$$

9 Sec 6: Table 1, first column (“Algorithm”)

Is:

  • Spot

  • remFin\(\rightarrow \)split\(\alpha \)

  • split\(\alpha \) \(\rightarrow \)remFin

  • remFin\(\rightarrow \)rewrite\(\alpha \)

  • product

  • product (no langcover)

  • limit-det.

  • limit-det. via GBA

  • good-for-MDP

  • good-for-MDP via GBA

  • Spot

  • product

Should be:

  • Spot

  • remFin \(\rightarrow \) split \(\alpha \)

  • split \(\alpha \rightarrow \) remFin

  • remFin \(\rightarrow \) rewrite

  • product

  • product (no langcover)

  • limit-det.

  • limit-det. via GBA

  • good-for-MDP

  • good-for-MDP via GBA

  • Spot

  • product

10 Sec 6: Table 1

Should be:

  • the horizontal line after the 6th line shold not cross through the first column

  • random in the first column should be vertically aligned in the middle of the first 10 lines