Innovations in Systems and Software Engineering

, Volume 11, Issue 3, pp 203–215 | Cite as

BOWL: augmenting the Semantic Web with beliefs

  • Jin Song Dong
  • Yuzhang Feng
  • Yuan-Fang Li
  • Colin Keng-Yan Tan
  • Bimlesh Wadhwa
  • Hai H. Wang
Original Paper

Abstract

As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.

Keywords

Semantic Web OWL Probabilistic ontology language 

References

  1. 1.
    Adlassnig KP et al (1985) CADIAG: approaches to computer-assisted medical diagnosis. Comput Biol Med 15(5):315–335CrossRefGoogle Scholar
  2. 2.
    Adams JB (1984) Probabilistic reasoning and certainty factors in rule-based expert systems. In: Buchanan BG, Shortliffe EH (eds) Rule-based expert systems. Addison-Wesley, pp 263–271Google Scholar
  3. 3.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook—theory, implementation and applications. Cambridge University Press, Cambridge Kindly check and confirm the inserted publisher location for the references [3], [23]MATHGoogle Scholar
  4. 4.
    Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Sci Am 284(5):35–43CrossRefGoogle Scholar
  5. 5.
    Tresp CB, Molitor R (1998) A description logic for vague knowledge. In: Proceedings of the 13th biennial European conference on artificial intelligence (ECAI’98). J. Wiley and Sons, Brighton, UK, pp 361–365Google Scholar
  6. 6.
    Brickley D, Guha RV (eds) (2004) Resource description framework (rdf) schema specification 1.0. http://www.w3.org/TR/rdf-schema/
  7. 7.
    Koller D, Levy A, Pfeffer A (1997) P- Classic: a tractable probabilistic description logic. In: Kuipers B, Webber B (eds) Proceedings of the fourteenth national conference on AI (AAAI-97). Providence, Rhode Island, pp 390–397Google Scholar
  8. 8.
    Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math stat 325–339Google Scholar
  9. 9.
    Ding Z, Peng Y (2004) A probabilistic extension to ontology language OWL. In: Proceedings of the 37th Hawaii international conference on system sciences (HICSS-37). Big Island, HawaiiGoogle Scholar
  10. 10.
    van Harmelen, Frank, Peter F. Patel-Schneider, Ian Horrocks (2001) Reference description of the DAML \(+\) OIL ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness, LA SteinGoogle Scholar
  11. 11.
    Heckerman D, Horvitz E, Nathwani B, Heckerman DE, Horvitz EJ, Nathwani BN (1989) Update on the pathfinder project. In: Proceedings of the thirteenth symposium on computer applications in medical care. IEEE Computer Society Press, pp 203–207Google Scholar
  12. 12.
    Horrocks I, Patel-Schneider PF, van Harmelen F (2003) From \(\cal SHIQ\) and RDF to OWL: the making of a web ontology language. J Web Semant 1(1):7–26. http://www.websemanticsjournal.org/index.php/ps/article/view/24/22
  13. 13.
    Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: a semantic web rule language combining OWL and RuleML. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
  14. 14.
    Jaffar J, Lassez JL (1987) Constraint logic programming. In: Proceedings of the 14th annual ACM symposium on principles of programming languages, pp 111–119Google Scholar
  15. 15.
    Jaffar J, Michaylov S, Stuckey PJ, Yap R (1992) The CLP(\(\cal R\)) language and system. Trans Progr Lang Syst 14(3):339–395. doi:10.1145/129393.129398 CrossRefGoogle Scholar
  16. 16.
    Jaffar J, Santosa A, Voicu R (2005) Modeling systems in CLP with coinductive tabling. In: International conference on logic programmingGoogle Scholar
  17. 17.
    Dean M, Schreiber G (eds) (2004) OWL web ontology language reference. http://www.w3.org/TR/2004/REC-owl-ref-20040210/
  18. 18.
    Minsky M (1981) A framework for representing knowledge. In: Haugeland J (ed) Mind design: philosophy, psychology, artificial intelligence. MIT Press, Cambridge, pp 95–128Google Scholar
  19. 19.
    Ng KC, Abramson B (1990) Uncertainty management in expert systems. IEEE Intell Syst 5:29–48. doi:10.1109/64.53180 Google Scholar
  20. 20.
    Nottelmann H, Fuhr N (2004) pDAML+OIL: a probabilistic extension to DAML+OIL based on probabilistic Datalog. In: Proceedings of the 10th international conference on information processing and management of uncertainty in knowledge-based systems (IPMU”04), Perugia, ItalyGoogle Scholar
  21. 21.
    Patel-Schneider PF, Hayes P, Horrocks I (eds) (2004) OWL web ontology semantics and abstract syntax. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
  22. 22.
    Picard J (2000) Probabilistic argumentation systems applied to information retrieval. Ph.D. thesis, Universite de Neuchatel, SuisseGoogle Scholar
  23. 23.
    Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonMATHGoogle Scholar
  24. 24.
    Smets P (2000) Belief functions and the transferrable belief model. http://ippserv.rug.ac.be/documentation/belief/belief.pdf
  25. 25.
    Tan CKY (2003) Belief augmented frames. Ph.D. thesis, National University of SingaporeGoogle Scholar
  26. 26.
    Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14:137–166MATHMathSciNetGoogle Scholar
  27. 27.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Jin Song Dong
    • 1
  • Yuzhang Feng
    • 2
  • Yuan-Fang Li
    • 3
  • Colin Keng-Yan Tan
    • 1
  • Bimlesh Wadhwa
    • 1
  • Hai H. Wang
    • 4
  1. 1.School of ComputingNational University of SingaporeSingaporeSingapore
  2. 2.SAS Institute, SingaporeSingaporeSingapore
  3. 3.Faculty of ITMonash UniversityClaytonAustralia
  4. 4.School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations