Skip to main content

Advertisement

Log in

Muscle-to-organ cross-talk mediated by interleukin 6 during exercise: a review

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Physical activity is increasingly recommended as a therapeutic approach for various lifestyle-related conditions, including type 2 diabetes, dementia, cardiovascular diseases, and cancer. Recent advancements in scientific research have uncovered the role of skeletal muscle as an endocrine organ, releasing interleukin 6 (IL-6) in response to physical activity. This secretion facilitates communication between the muscle and other organs/systems in the body, including the brain, adipose tissue, brown tissue, bone, liver, gut, pancreas, and within the muscle itself. IL-6 has diverse biological functions, including appetite regulation, lipid and glucose metabolism, promotion of browning of white adipose tissue, bone formation, muscle hypertrophy, and modulation of tumor growth. A search was conducted in PubMed and Web of Science from inception until December 2022 to identify original studies investigating the cross-talk mediated by Interleukin 6 during exercise. These findings suggest that IL-6 could serve as a valuable biomarker to monitor exercise prescription for individuals with conditions, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data used to support the findings of study are included within the article.

References

  1. Kjaer M, Secher N, Bangsbo J, Perko G, Horn A, Mohr T et al (1996) Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J Appl Physiol 80(6):2156–2162

    Article  CAS  PubMed  Google Scholar 

  2. Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A et al (1997) Long term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35(1):1–16

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein M (1961) Humoral nature of hypoglycemia in muscular exercise. Am J Physiol-Leg Content 200(1):67–70

    Article  Google Scholar 

  4. Pedersen B, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24:113–119

    Article  CAS  PubMed  Google Scholar 

  5. Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16(3–4):249–284

    Article  CAS  PubMed  Google Scholar 

  6. Song JK, Moon JH (2023) Effects of cardiovascular training on interleukin-6 in stroke patients: a systematic review and meta-analysis of randomized controlled trials. Phys Ther Rehabilit Sci 12(2):115–122

    Article  Google Scholar 

  7. Rose-John S, Scheller J, Elson G, Jones SA (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80(2):227–236

    Article  CAS  PubMed  Google Scholar 

  8. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. https://doi.org/10.1111/j.1469-7793.2000.00237.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. https://doi.org/10.1152/physrev.90100.2007

    Article  PubMed  Google Scholar 

  10. Lee JH, Jun H-S (2019) Role of myokines in regulating skeletal muscle mass and function. Front Physiol 10:42

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  11. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44

    Article  CAS  PubMed  Google Scholar 

  12. Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B et al (2008) Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 586(8):2195–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Broholm C, Pedersen BK (2010) Leukaemia inhibitory factor-an exercise-induced myokine. Exerc Immunol Rev 16:77–85

    PubMed  Google Scholar 

  14. Gao S, Durstine JL, Koh H-J, Carver WE, Frizzell N, Carson JA (2017) Acute myotube protein synthesis regulation by IL-6-related cytokines. Am J Physiol-Cell Physiol 313(5):C487–C500

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gandini L, Fior G, Schibler A, Obonyo NG, Li Bassi G, Suen JY et al (2023) Interleukin-6 inhibitors in non-COVID-19 ARDS: analyzing the past to step into the post-COVID-19 era. Crit Care 27(1):1–5

    Article  Google Scholar 

  16. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  17. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc Immunol Rev 12(6–33):41

    Google Scholar 

  18. Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK (2004) Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol-Endocrinol Metab 287(6):E1189–E1194

    Article  CAS  PubMed  Google Scholar 

  19. Keller C, Steensberg A, Hansen AK, Fischer CP, Plomgaard P, Pedersen BK (2005) Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol 99(6):2075–2079

    Article  CAS  PubMed  Google Scholar 

  20. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697

    Article  CAS  PubMed  Google Scholar 

  21. Bruce CR, Dyck DJ (2004) Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-α. Am J Physiol-Endocrinol Metab 287(4):E616–E621

    Article  CAS  PubMed  Google Scholar 

  22. Petersen E, Carey A, Sacchetti M, Steinberg G, Macaulay S, Febbraio M et al (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol-Endocrinol Metab 288(1):E155–E162

    Article  CAS  PubMed  Google Scholar 

  23. Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88(7):3005–3010

    Article  PubMed  Google Scholar 

  24. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25

    Article  CAS  PubMed  Google Scholar 

  25. Kim H-J, Higashimori T, Park S-Y, Choi H, Dong J, Kim Y-J et al (2004) Differential effects of interleukin-6 and-10 on skeletal muscle and liver insulin action in vivo. Diabetes 53(4):1060–1067

    Article  CAS  PubMed  Google Scholar 

  26. Dongsheng C, Minsheng Y, Frantz Daniel F, Melendez Peter A, Lone H, Jongsoon L et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11(2):183–190

    Article  Google Scholar 

  27. Matthews VB, Allen T, Risis S, Chan M, Henstridge DC, Watson N et al (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53:2431–2441

    Article  CAS  PubMed  Google Scholar 

  28. Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL et al (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8(1):75–79

    Article  CAS  PubMed  Google Scholar 

  29. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17(11):1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15(5):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mauer J, Denson JL, Brüning JC (2015) Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 36(2):92–101

    Article  CAS  PubMed  Google Scholar 

  32. Lehrskov LL, Lyngbaek MP, Soederlund L, Legaard GE, Ehses JA, Heywood SE et al (2018) Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab 27(6):1201–11.e3

    Article  Google Scholar 

  33. Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol-Endocrinol Metab 285(2):E433–E437

    Article  CAS  PubMed  Google Scholar 

  34. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J 17(8):1–10

    Article  Google Scholar 

  35. Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16(11):1335–1347

    Article  CAS  PubMed  Google Scholar 

  36. Keller C, Hellsten Y, Steensberg A, Pedersen BK (2006) Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine 36(3–4):141–147

    Article  CAS  PubMed  Google Scholar 

  37. Hidalgo J, Florit S, Giralt M, Ferrer B, Keller C, Pilegaard H (2010) Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat. Brain Behav Immun 24(1):119–126

    Article  CAS  PubMed  Google Scholar 

  38. Senaris R, Trujillo M, Navia B, Comes G, Ferrer B, Giralt M et al (2011) Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way. J Neuroendocrinol 23(8):675–686

    Article  CAS  PubMed  Google Scholar 

  39. Molinero A, Fernandez-Perez A, Mogas A, Giralt M, Comes G, Fernandez-Gayol O et al (2017) Role of muscle IL-6 in gender-specific metabolism in mice. PLoS ONE 12(3):e0173675

    Article  PubMed  PubMed Central  Google Scholar 

  40. Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM et al (2017) IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep 19(2):267–280

    Article  CAS  PubMed  Google Scholar 

  41. Pedersen B (2013) Muscle as a secretory organ. Compr Physiol 3:1337–1362

    Article  PubMed  Google Scholar 

  42. Pedersen BK (2019) The physiology of optimizing health with a focus on exercise as medicine. Annu Rev Physiol 81:607–627

    Article  CAS  PubMed  Google Scholar 

  43. Fosgerau K, Galle P, Hansen T, Albrechtsen A, Rieper CdL, Pedersen BK et al (2010) Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J Endocrinol 204(3):265

    Article  CAS  PubMed  Google Scholar 

  44. Bays HE (2009) “Sick fat”, metabolic disease, and atherosclerosis. Am J Med 122(1):S26–S37

    Article  CAS  PubMed  Google Scholar 

  45. Haffner SM (2007) Abdominal adiposity and cardiometabolic risk: do we have all the answers? Am J Med 120(9):S10–S16

    Article  CAS  PubMed  Google Scholar 

  46. Whitmer R, Gustafson D, Barrett-Connor E, Haan M, Gunderson E, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71(14):1057–1064

    Article  CAS  PubMed  Google Scholar 

  47. Giovannucci E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr 86(3):836S-S842

    Article  CAS  Google Scholar 

  48. Xue F, Michels KB (2007) Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr 86(3):823S-S835

    Article  CAS  Google Scholar 

  49. Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K et al (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359(20):2105–2120

    Article  CAS  PubMed  Google Scholar 

  50. Wedell-Neergaard A-S, Krogh-Madsen R, Petersen GL, Hansen ÅM, Pedersen BK, Lund R et al (2018) Cardiorespiratory fitness and the metabolic syndrome: roles of inflammation and abdominal obesity. PLoS ONE 13(3):e0194991

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wedell-Neergaard A-S, Eriksen L, Grønbæk M, Pedersen BK, Krogh-Madsen R, Tolstrup J (2018) Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI. PLoS ONE 13(1):e0190645

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yudkin JS, Eringa E, Stehouwer CD (2005) “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365(9473):1817–1820

    Article  PubMed  Google Scholar 

  53. Spiegelman HC (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Olsen RH (2008) Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA 299:1261–1263

    Article  CAS  PubMed  Google Scholar 

  55. Benatti FB, Pedersen BK (2015) Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nature Rev Rheumatol 11(2):86–97

    Article  CAS  Google Scholar 

  56. Nordby P, Auerbach PL, Rosenkilde M, Kristiansen L, Thomasen JR, Rygaard L et al (2012) Endurance training per se increases metabolic health in young, moderately overweight men. Obesity 20(11):2202–2212

    Article  CAS  PubMed  Google Scholar 

  57. Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al (2000) Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial. Ann Intern Med 133(2):92–103

    Article  CAS  PubMed  Google Scholar 

  58. Elgharib AA, Khalifa DS, Khodeer SA, Mohsen Y, Masallat DT (2023) Interleukin-6 in exhaustive exercises and its correlation to bacteremia: a pilot study. Egypt J Basic Appl Sci 10(1):25–32

    Google Scholar 

  59. Wedell-Neergaard A-S, Lehrskov LL, Christensen RH, Legaard GE, Dorph E, Larsen MK et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab 29(4):844–55.e3

    Article  CAS  PubMed  Google Scholar 

  60. Christensen RH, Wedell-Neergaard A-S, Lehrskov LL, Legård GE, Dorph EB, Nymand S et al (2018) The role of exercise combined with tocilizumab in visceral and epicardial adipose tissue and gastric emptying rate in abdominally obese participants: protocol for a randomised controlled trial. Trials 19:1–11

    Article  CAS  Google Scholar 

  61. Christensen RH, Lehrskov LL, Wedell-Neergaard A-S, Legaard GE, Ried-Larsen M, Karstoft K et al (2019) Aerobic exercise induces cardiac fat loss and alters cardiac muscle mass through an interleukin-6 receptor–dependent mechanism: cardiac analysis of a double-blind randomized controlled clinical trial in abdominally obese humans. Circulation 140(20):1684–1686

    Article  PubMed  Google Scholar 

  62. Eckel J (2019) Myokines in metabolic homeostasis and diabetes. Diabetologia 62(9):1523–1528

    Article  CAS  PubMed  Google Scholar 

  63. Rodríguez A, Becerril S, Ezquerro S, Mendez-Gimenez L, Frühbeck G (2017) Crosstalk between adipokines and myokines in fat browning. Acta Physiol 219(2):362–381

    Article  Google Scholar 

  64. Townsend LK, Wright DC (2019) Looking on the “brite” side exercise-induced browning of white adipose tissue. Pflügers Archiv-Eur J Physiol 471:455–465

    Article  CAS  Google Scholar 

  65. Knudsen JG, Murholm M, Carey AL, Biensø RS, Basse AL, Allen TL et al (2014) Role of IL-6 in exercise training-and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS ONE 9(1):e84910

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  66. Kristóf E, Klusóczki Á, Veress R, Shaw A, Combi ZS, Varga K et al (2019) Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 377(1–2):47–55

    Article  PubMed  Google Scholar 

  67. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK et al (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281(3):739–749

    Article  CAS  PubMed  Google Scholar 

  68. Vosselman M, Hoeks J, Brans B, Pallubinsky H, Nascimento E, Van Der Lans A et al (2015) Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes 39(12):1696–1702

    Article  CAS  Google Scholar 

  69. Schipilow J, Macdonald H, Liphardt A, Kan M, Boyd S (2013) Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone 56(2):281–289

    Article  CAS  PubMed  Google Scholar 

  70. Verschueren S, Gielen E, O’neill T, Pye S, Adams J, Ward K et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24:87–98

    Article  CAS  PubMed  Google Scholar 

  71. Guo B, Zhang Z-K, Liang C, Li J, Liu J, Lu A et al (2017) Molecular communication from skeletal muscle to bone: a review for muscle-derived myokines regulating bone metabolism. Calcif Tissue Int 100:184–192

    Article  CAS  PubMed  Google Scholar 

  72. Gomarasca M, Banfi G, Lombardi G (2020) Myokines: the endocrine coupling of skeletal muscle and bone. Adv Clin Chem 94:155–218

    Article  CAS  PubMed  Google Scholar 

  73. De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M et al (2006) Impaired skeletal development in interleukin-6–transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54(11):3551–3563

    Article  PubMed  Google Scholar 

  74. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS et al (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257(5066):88–91

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Le Goff B, Blanchard F, Berthelot J-M, Heymann D, Maugars Y (2010) Role for interleukin-6 in structural joint damage and systemic bone loss in rheumatoid arthritis. Jt Bone Spine 77(3):201–205

    Article  Google Scholar 

  76. Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60(9):2747–2756

    Article  CAS  PubMed  Google Scholar 

  77. Palmqvist P, Persson E, Conaway HH, Lerner UH (2002) IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-κB ligand, osteoprotegerin, and receptor activator of NF-κB in mouse calvariae. J Immunol 169(6):3353–3362

    Article  CAS  PubMed  Google Scholar 

  78. Saidenberg-Kermanac’h N, Cohen-Solal M, Bessis N, De Vernejoul M-C, Boissier M-C (2004) Role for osteoprotegerin in rheumatoid inflammation. Jt Bone Spine 71(1):9–13

    Article  Google Scholar 

  79. Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G (2016) Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 54:284–305

    Article  CAS  PubMed  Google Scholar 

  80. Wasserman DH, Lacy D, Colburn C, Bracy D, Cherrington A (1991) Efficiency of compensation for absence of fall in insulin during exercise. Am J Physiol-Endocrinol Metab 261(5):E587–E597

    Article  CAS  Google Scholar 

  81. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53(7):1643–1648

    Article  CAS  PubMed  Google Scholar 

  82. Papagianni G, Panayiotou C, Vardas M, Balaskas N, Antonopoulos C, Tachmatzidis D et al (2023) The anti-inflammatory effects of aerobic exercise training in patients with type 2 diabetes: a systematic review and meta-analysis. Cytokine 164:156157

    Article  CAS  PubMed  Google Scholar 

  83. Steensberg A, Fischer CP, Sacchetti M, Keller C, Osada T, Schjerling P et al (2003) Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 548(2):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Biazi GR, Uemura IG, Miksza DR, Ferraz LS, Diaz BF, Bertolini GL et al (2023) Interleukin 6 acutely increases gluconeogenesis and decreases the suppressive effect of insulin on cAMP-stimulated glycogenolysis in rat liver. Cell Biochem Funct. https://doi.org/10.1002/cbf.3817

    Article  PubMed  Google Scholar 

  85. Peppler WT, Townsend LK, Meers GM, Panasevich MR, MacPherson RE, Rector RS et al (2019) Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice. Am J Physiol-Gastrointest Liver Physiol 316(1):G166–G178

    Article  CAS  PubMed  Google Scholar 

  86. Woerle H-J, Albrecht M, Linke R, Zschau S, Neumann C, Nicolaus M et al (2008) Importance of changes in gastric emptying for postprandial plasma glucose fluxes in healthy humans. Am J Physiol-Endocrinol Metab 294(1):E103–E109

    Article  CAS  PubMed  Google Scholar 

  87. Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G et al (2008) Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci 105(35):13163–13168

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. McCarthy D, Dale MM (1988) The leucocytosis of exercise: a review and model. Sports Med 6:333–363

    Article  CAS  PubMed  Google Scholar 

  89. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. https://doi.org/10.1152/physrev.2000.80.3.1055

    Article  PubMed  Google Scholar 

  90. Nieman DC, Fagoaga OR, Butterworth DE, Warren BJ, Utter A, Davis JM et al (1997) Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function after 2.5 h or running. Am J Clin Nutr 66(1):153–159

    Article  CAS  PubMed  Google Scholar 

  91. Nehlsen-Cannarella S, Fagoaga O, Nieman D, Henson D, Butterworth D, Schmitt R et al (1997) Carbohydrate and the cytokine response to 2.5 h of running. J Appl Physiol 82(5):1662–1667

    Article  CAS  PubMed  Google Scholar 

  92. Fischer CP, Hiscock NJ, Penkowa M, Basu S, Vessby B, Kallner A et al (2004) Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 558(2):633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pedersen BK (2017) Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Investig 47(8):600–611

    Article  CAS  Google Scholar 

  94. Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94(2):146–150

    Article  CAS  PubMed  Google Scholar 

  95. Knudsen SH, Pedersen BK (2015) Targeting inflammation through a physical active lifestyle and pharmaceuticals for the treatment of type 2 diabetes. Curr Diabetes Rep 15:1–9

    Article  CAS  Google Scholar 

  96. Petersen A, Pedersen B (2006) The role of IL-6 in mediating the anti inflammatory. J Physiol Pharmacol 57(Suppl 10):43–51

    PubMed  Google Scholar 

  97. Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 42:105–117

    Article  CAS  PubMed  Google Scholar 

  98. Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98(4):1154–1162

    Article  CAS  PubMed  Google Scholar 

  99. Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N et al (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch 446:9–16

    Article  CAS  PubMed  Google Scholar 

  100. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75(1):40–47

    Article  CAS  PubMed  Google Scholar 

  101. Mizuhara H, O’Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K et al (1994) T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 179(5):1529–1537

    Article  CAS  PubMed  Google Scholar 

  102. Han MS, White A, Perry RJ, Camporez J-P, Hidalgo J, Shulman GI et al (2020) Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci 117(6):2751–2760

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Christensen RH, Wedell-Neergaard A-S, Lehrskov LL, Legaard GE, Dorph E, Larsen MK et al (2019) Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol 4(8):778–787

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hojman P, Gehl J, Christensen JF, Pedersen BK (2018) Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab 27(1):10–21

    Article  CAS  PubMed  Google Scholar 

  105. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH et al (2016) Voluntary running suppresses tumor growth through epinephrine-and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23(3):554–562

    Article  CAS  PubMed  Google Scholar 

  106. Moore SC, Lee I-M, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM et al (2016) Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 176(6):816–825

    Article  PubMed  PubMed Central  Google Scholar 

  107. Christensen JF, Simonsen C, Hojman P (2011) Exercise training in cancer control and treatment. Compr Physiol 9(1):165–205

    Google Scholar 

  108. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol-Endocrinol Metab 301(3):E504–E510

    Article  CAS  PubMed  Google Scholar 

  109. Aoi W, Naito Y, Takagi T, Tanimura Y, Takanami Y, Kawai Y et al (2013) A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62(6):882–889

    Article  CAS  PubMed  Google Scholar 

  110. Manole E, Ceafalan LC, Popescu BO, Dumitru C, Bastian AE (2018) Myokines as possible therapeutic targets in cancer cachexia. J Immunol Res. https://doi.org/10.1155/2018/8260742

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lucia A, Ramírez M (2016) Muscling in on cancer. N Engl J Med 375(9):892–894

    Article  PubMed  Google Scholar 

  112. Hunschede S, Kubant R, Akilen R, Thomas S, Anderson GH (2017) Decreased appetite after high-intensity exercise correlates with increased plasma interleukin-6 in normal-weight and overweight/obese boys. Curr Dev Nutr 1(3):e000398

    Article  PubMed  PubMed Central  Google Scholar 

  113. Diniz TA, Júnior JCJA, Mosele FC, Cabral-Santos C, de Lima Junior EA, de Souza Teixeira AA et al (2019) Exercise-induced AMPK activation and IL-6 muscle production are disturbed in adiponectin knockout mice. Cytokine 119:71–80

    Article  CAS  PubMed  Google Scholar 

  114. Puppa MJ, White JP, Velázquez KT, Baltgalvis KA, Sato S, Baynes JW et al (2012) The effect of exercise on IL-6-induced cachexia in the ApcMin/+ mouse. J Cachexia Sarcopenia Muscle 3:117–137

    Article  PubMed  Google Scholar 

  115. Bernecker C, Scherr J, Schinner S, Braun S, Scherbaum W, Halle M (2013) Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scand J Med Sci Sports 23(2):207–214

    Article  CAS  PubMed  Google Scholar 

  116. Li L, Huang C, Yin H, Zhang X, Wang D, Ma C et al (2021) Interleukin-6 mediated exercise-induced alleviation of adiposity and hepatic steatosis in mice. BMJ Open Diabetes Res Care 9(1):e001431

    Article  PubMed  PubMed Central  Google Scholar 

  117. Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V et al (2018) Exercise induces white adipose tissue browning across the weight spectrum in humans. Front Physiol 9:1781

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gump BS, McMullan DR, Cauthon DJ, Whitt JA, Del Mundo JD, Letham T et al (2013) Short-term acetaminophen consumption enhances the exercise-induced increase in Achilles peritendinous IL-6 in humans. J Appl Physiol 115(6):929–936

    Article  CAS  PubMed  Google Scholar 

  119. Paula FM, Leite NC, Vanzela EC, Kurauti MA, Freitas-Dias R, Carneiro EM et al (2015) Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J 29(5):1805–1816

    Article  CAS  PubMed  Google Scholar 

  120. Mendham AE, Donges CE, Liberts EA, Duffield R (2011) Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, overweight population. Eur J Appl Physiol 111:1035–1045

    Article  CAS  PubMed  Google Scholar 

  121. Kohut M, McCann D, Russell D, Konopka D, Cunnick J, Franke W et al (2006) Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun 20(3):201–209

    Article  CAS  PubMed  Google Scholar 

  122. Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R et al (2013) Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS ONE 8(2):e57141

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Shalamzari SA, Agha-Alinejad H, Alizadeh S, Shahbazi S, Khatib ZK, Kazemi A et al (2014) The effect of exercise training on the level of tissue IL-6 and vascular endothelial growth factor in breast cancer bearing mice. Iran J Basic Med Sci 17(4):231

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gómez-Rubio P, Trapero I (2019) The effects of exercise on IL-6 levels and cognitive performance in patients with schizophrenia. Diseases 7(1):11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RSR and FP wrote the manuscript. Both authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Reza Sabzevari Rad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent all participants Provided Informed consent prior to their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzevari Rad, R., Panahzadeh, F. Muscle-to-organ cross-talk mediated by interleukin 6 during exercise: a review. Sport Sci Health 20, 1–13 (2024). https://doi.org/10.1007/s11332-023-01102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-023-01102-7

Keywords

Navigation