Skip to main content
Log in

Interrelationship about body composition on sleep quality, physical activity, and heart rate variability in young adults: a cross-sectional study

  • Research
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

This study evaluates the heart rate variability (HRV), body composition parameters, physical activity level means by International Physical Activity Questionnaire (IPAQ), and sleep quality [means by Pittsburgh Sleep Quality Index (PSQI)] in non-obese, overweight, and obese individuals.

Methods

51 adults were included in this study. The age of the participants ranged from 18 to 39 years old, and they underwent vital signs measurement, nutritional status classification means body mass index (BMI), and body composition through the bioelectrical impedance (BIA), questionnaires (IPAQ and PSQI), and HRV measurement.

Results

The most influenced body composition variables in the normal weight, overweight, and obese groups were age, body weight, BMI, resting metabolic rate, visceral fat level (VFL), skeletal muscle mass, body fat mass (BFM), body fat percentage, and minerals with p < 0.05, for all comparisons. The stress index (SI) was the HRV variable most influenced by different levels of BMI p < 0.05. The PSQI was more influenced by body water, lean mass, fat-free mass, and proteins, with p < 0.05. Furthermore, SI was the only HRV index that negatively correlated (r = − 0.395; p < 0.05) with physical activity (PA) and BFM (r = − 0.409; p < 0.05).

Conclusion

Obesity increases stress and sleep disturbance and is reduced with increased PA levels. In addition, PA level was negatively associated with SI and BFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Catai MA, Pastre CM, Godoy MF, Silva E, Takahashi ACM, Vanderlei LCM (2020) Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazilian J Phys Ther [Internet] 24(2):91–102. https://doi.org/10.1016/j.bjpt.2019.02.006

    Article  Google Scholar 

  2. Young HA, Benton D (2018) Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health ? Behav Pharmacol 29(2–3):140–151. https://doi.org/10.1097/FBP.0000000000000383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baevsky RM, Ivanov GG, Chirejkin LV (2001) The analysis of variability of an intimate rhythm at use various electrocardiographyc systems: methodical recommendations. Vestnik Aritmologii 2001(24):1–23

    Google Scholar 

  4. Köchli S (2020) Adiposity and physical activity are related to heart rate variability: the African-PREDICT study. Eur J Clin Invest 6:1–10. https://doi.org/10.1111/eci.13330

    Article  Google Scholar 

  5. Friederich HC, Schild S, Schellberg D, Quenter A, Bode C, Herzog W, Zipfel S (2006) Cardiac parasympathetic regulation in obese women with binge eating disorder. Int J Obes (Lond) 30(3):534–542. https://doi.org/10.1038/sj.ijo.0803181. (PMID: 16314876)

    Article  PubMed  Google Scholar 

  6. Quintana DS, Guastella AJ, Outhred T, Hickie IB, Kemp AH (2012) Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition. Int J Psychophysiol 86(2):168–172. https://doi.org/10.1016/j.ijpsycho.2012.08.012

    Article  PubMed  Google Scholar 

  7. May R, Mcberty V, Zaky A, Gianotti M (2017) Vigorous physical activity predicts higher heart rate variability among younger adults. J Physiol Anthropol 36(24):1–5. https://doi.org/10.1186/s40101-017-0140-z

    Article  Google Scholar 

  8. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M (2003) Effects of moderate and vigorous physical activity on heart rate variability in a british study of civil servants. Am J Epidemiol 158(2):135–143. https://doi.org/10.1093/aje/kwg120

    Article  PubMed  Google Scholar 

  9. Strüven A, Holzapfel C, Stremmel C, Brunner S (2021) Obesity, nutrition and heart rate variability. Int J Mol Sci 22(4215):1–13. https://doi.org/10.3390/ijms22084215

    Article  CAS  Google Scholar 

  10. Kingsley JD, Figueroa A (2014) Acute and training effects of resistance exercise on heart rate variability. Clin Physiol Functional Imaging 36(3):1–9. https://doi.org/10.1111/cpf.12223

    Article  Google Scholar 

  11. Caruso FR, Arena R, Phillips SA, Bonjorno JC Jr, Mendes RG, Arakelian VM et al (2015) Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur J Phys Rehabil Med 51(3):281–289 (PMID: 25384514)

    CAS  PubMed  Google Scholar 

  12. Ibar C, Fortuna F, Gonzalez D, Jamardo J, Jacobsen D, Pugliese L, Fabre B (2021) Evaluation of stress, burnout and hair cortisol levels in health workers at a University Hospital during COVID-19 pandemic. Psychoneuroendocrinology J 128(1):105213. https://doi.org/10.1016/j.psyneuen.2021.105213

    Article  CAS  Google Scholar 

  13. Kivimäki M, Steptoe A (2017) Effects of stress on the development and progression of cardiovascular disease. Nat Publ Gr 15(4):215–229. https://doi.org/10.1038/nrcardio.2017.189

    Article  CAS  Google Scholar 

  14. Kim H, Cheon E, Bai D, Lee YH, Koo B (2018) Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig 15(3):235–245. https://doi.org/10.3073/pi.2017.08.17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Siaplaouras J, Frerix M, Apitz A, Zöller D, Apitz C (2021) Effects of exercise training on heart rate variability in children and adolescents with pulmonary arterial hypertension: a pilot study. Cardiovasc Diagn Ther. 11(4):1028–1036. https://doi.org/10.21037/cdt-20-263

    Article  PubMed  PubMed Central  Google Scholar 

  16. Föhr T, Pietilä J, Helander E, Myllymäki T, Lindholm H, Rusko H et al (2016) Physical activity, body mass index and heart rate variability-based stress and recovery in 16,275 Finnish employees: a cross-sectional study. BMC Public Health 11(4):1028–1036. https://doi.org/10.1186/s12889-016-3391-4

    Article  Google Scholar 

  17. Cuschieri S (2019) The STROBE guidelines. Saudi J Anesth 19(13):31–34. https://doi.org/10.4103/sja.SJA_543_18

    Article  Google Scholar 

  18. Barroso WKS, Rodrigues CIS, Bortolotto LA et al (2021) Diretrizes Diretrizes Brasileiras de Hipertensão Arterial – 2020. Arq Bras Cardiol. 116(3):516–658. https://doi.org/10.36660/abc.20201238

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsudo S, Araújo T, Matsudo VKR, Andrade D, Andrade E, Oliveira LC et al (1998) Questionário Internacional de Atividade Física (IPAQ): Estudo de validade e reprodutibilidade no Brasil. Atividade Física & Saúde. 6(2):1–18. https://doi.org/10.1220/rbafs.v.6n2p5-18

    Article  Google Scholar 

  20. Melo AB, Carvalho EM, Santos de Sá FG, Cordeiro JP, Leopoldo AS, Lima-Leopoldo AP (2016) Nível de atividade física dos estudantes de graduação em educação em educação física da Universidade Federal do Espirito Santo. J Phys Educ 27(e2723):1–12. https://doi.org/10.4025/jphyseduc.v27i1.2723

    Article  Google Scholar 

  21. Alves VV, Borges KCS, Ribeiro LFP, Gadelha SR, Santos SC (2010) Concordância entre critérios de categorização do nível de atividade física a partir do questionário internacional de atividade física. Rev Bras de Ativ Fís & Saúde 15(2):111–114. https://doi.org/10.12820/rbafs.v.15n2p111-114

    Article  Google Scholar 

  22. Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rössler W (2007) Prevalence, course, and comorbidity of insomnia and depression in young adults. Sleep 31(4):473–480. https://doi.org/10.1093/sleep/31.4.473

    Article  Google Scholar 

  23. Bloomfield DM, Magnano A, Bigger JT, Rivadeneira H, Parides M, Steinman RC et al (2023) Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability 280:1145–1150. https://doi.org/10.1152/ajpheart.2001.280.3.H1145

    Article  Google Scholar 

  24. Malik M (1990) Electrophysiology, pacing, and arrhythmia. Clin Cardiol 13(1):570–576 (PMID: 2525442)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  25. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2008) Progressive Statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc 41(1):3–12. https://doi.org/10.1249/MSS.0b013e31818cb278

    Article  Google Scholar 

  26. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t -tests and ANOVAs. Front Physiol 4:1–12. https://doi.org/10.3389/fpsyg.2013.00863

    Article  Google Scholar 

  27. Van Der VES, Savas M, Van REFC (2018) Stress and obesity: are there more susceptible individuals ? Curr Obes Rep 7(1):193–203

    Google Scholar 

  28. Lucertini F, Ponzio E, Di Palma M, Galati C, Federici A, Barbadoro P et al (2015) High cardiorespiratory fitness is negatively associated with daily cortisol output in healthy aging men. PLoS ONE 10(11):1–15. https://doi.org/10.1371/journal.pone.0141970

    Article  CAS  Google Scholar 

  29. Brix MJ, Tura A, Herz CT, Feder A, Krzizek E, Parzer V et al (2021) The association of cortisol excretion with weight and metabolic parameters in nondiabetic patients with morbid obesity. Obes Facts 14(1):510–519. https://doi.org/10.1159/000517766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67(1):259–284. https://doi.org/10.1146/annurev.physiol.67.040403.120816

    Article  CAS  PubMed  Google Scholar 

  31. Frank AP, Santos RDS, Palmer BF, Clegg DJ (2019) Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J Lipid Res 60(10):1710–1719. https://doi.org/10.1194/jlr.R086975

    Article  CAS  PubMed  Google Scholar 

  32. Gancitano G, Baldassarre A, Lecca LI, Mucci N, Petranelli M, Nicolia M et al (2021) HRV in active-duty special forces and public order military personnel. Sustainability 13(1):1–15. https://doi.org/10.3390/su13073867

    Article  Google Scholar 

  33. Wewege M, Van Den BR, Ward RE, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults : a systematic review and meta-analysis. Obes Rev 18:635–646. https://doi.org/10.1111/obr.12532

    Article  CAS  PubMed  Google Scholar 

  34. Lopez P, Taaffe DR, Galv DA, Newton RU, Nonemacher ER, Bassanesi RN et al (2022) Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan : a systematic review and meta-analysis. Obes Rev. 23(e13428):1–25. https://doi.org/10.1111/obr.13428

    Article  Google Scholar 

  35. Thompson D, Karpe F, Lafontan M, Frayn K (2023) Physical activity in the regulation of human adipose tissue physiology. Physiol Rev. 92:157–191. https://doi.org/10.1152/physrev.00012.2011

    Article  CAS  Google Scholar 

  36. Chen Y, Cui Y, Chen S, Wu Z (2017) Relationship between sleep and muscle strength among Chinese university students : a cross-sectional study. 17(4):327–333

    CAS  Google Scholar 

  37. Bliwise DL, Colrain IM, Swan GE, Bliwise NG (2010) Incident Sleep Disordered Breathing in Old Age. 9:997–1003. https://doi.org/10.1093/gerona/glq071

    Article  Google Scholar 

  38. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD (2011) Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 153(7):435–441. https://doi.org/10.7326/0003-4819-153-7-201010050-00006

    Article  Google Scholar 

  39. Baird J, Hill C, Harvey NC, Crozier S, Robinson S, Cooper C et al (2017) Duration of sleep at 3 years of age is associated with fat and fat- free mass at 4 years of age : the Southampton Women’ s Survey. J Sleep Res 25(4):412–418. https://doi.org/10.1111/jsr.12389

    Article  Google Scholar 

  40. Lamon S, Morabito A, Olivia EA, Elizabeth G, Dominique V, Alexander SE et al (2021) The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol Rep. 9:1–13. https://doi.org/10.1414/phy2.14660

    Article  Google Scholar 

Download references

Acknowledgements

We thank all participants directly or indirectly involved in this research.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Mateus Sendeski, Bruno Adriano da Luz de Oliveira, Bruno Ferrari Silva, Jorge Mota, and Braulio Henrique Magnani Branco performed material preparation, data collection, and analysis. Mateus Sendeski wrote the first draft of the manuscript, wrote the first draft of the manuscript, and Bruno Adriano da Luz de Oliveira and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bruno Ferrari Silva.

Ethics declarations

Conflict of interest

The authors report that there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendeski, M., da Luz de Oliveira, B.A., Silva, B.F. et al. Interrelationship about body composition on sleep quality, physical activity, and heart rate variability in young adults: a cross-sectional study. Sport Sci Health 20, 241–248 (2024). https://doi.org/10.1007/s11332-023-01100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-023-01100-9

Keywords

Navigation