Skip to main content

Advertisement

Log in

Plant-based diets and sports performance: a clinical review

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

Plant-based diets have become increasingly popular in Western culture. Although studies have examined physiologic health improvements of plant-based diets, there is little data on plant-based diets as it relates to sports performance.

Methods

Clinical review of systematic reviews, randomized trials, prospective and retrospective cohort studies available in English on PubMed and Google Scholar databases utilizing combinations of the search terms “athlete, sport, nutrition, diet, vegan, vegetarian, strength, endurance, health, performance, and exercise.”

Results

There are no significant differences in athletic performance in participants maintaining plant-based diets compared to those consuming omnivorous diets specifically related to strength, power, and endurance. Plant-based diets are at higher risk of predisposing individuals to certain micronutrient deficiencies, reduced protein intake, and lower serum creatine and sex testosterone levels, though supplementation may effectively replace the lacking components. Non-plant-based diets are associated with a higher risk of obesity, type II diabetes mellitus, certain malignancies, and cardiovascular disease, though several studies demonstrate that a particular meat- and fish-filled diet may reduce body weight, blood pressure, fat composition, and all-cause mortality.

Conclusion

Though plant-based and mixed omnivorous eaters may vary in their macronutrient and micronutrient intake, disease propensities, and oxygen consumption during exertion, a plant-based diet does not translate into a significantly different physical performance compared to a non-plant-based diet across measures of strength, power, and aerobic/anaerobic performance. For athletes, trainers, nutritionists and dieticians, and physicians, the most important recommendation is to maintain a nutritionally sufficient diet that provides the appropriate levels of vital nutrients and vitamins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnard ND, Katcher HI, Jenkins DJA et al (2009) Vegetarian and vegan diets in type 2 diabetes management. Nutr Rev 67:255–263. https://doi.org/10.1111/j.1753-4887.2009.00198.x

    Article  PubMed  Google Scholar 

  2. Craddock JC, Probst YC, Peoples GE (2016) Vegetarian and omnivorous nutrition—comparing physical performance. Int J Sport Nutr Exerc Metab 26:212–220. https://doi.org/10.1123/ijsnem.2015-0231

    Article  PubMed  Google Scholar 

  3. Larson-Meyer DE (2018) Nutritionally adequate vegetarian diets and athletic performance. In: Vegetarian nutrition and wellness. CRC Press, p 279–302

  4. Lynch H, Johnston C, Wharton C (2018) Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients 10:1841. https://doi.org/10.3390/nu10121841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walsh NP (2019) Nutrition and athlete immune health: new perspectives on an old paradigm. Sport Med 49:153–168. https://doi.org/10.1007/s40279-019-01160-3

    Article  Google Scholar 

  6. Haub MD, Wells AM, Campbell WW (2005) Beef and soy-based food supplements differentially affect serum lipoprotein-lipid profiles because of changes in carbohydrate intake and novel nutrient intake ratios in older men who resistive-train. Metabolism 54:769–774. https://doi.org/10.1016/j.metabol.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  7. Hietavala E-M, Puurtinen R, Kainulainen H, Mero AA (2012) Low-protein vegetarian diet does not have a short-term effect on blood acid–base status but raises oxygen consumption during submaximal cycling. J Int Soc Sports Nutr. https://doi.org/10.1186/1550-2783-9-50

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nebl J, Haufe S, Eigendorf J et al (2019) Exercise capacity of vegan, lacto-ovo-vegetarian and omnivorous recreational runners. J Int Soc Sports Nutr. https://doi.org/10.1186/s12970-019-0289-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raben A, Kiens B, RICHTER EA, et al (1992) Serum sex hormones and endurance performance after a lacto-ovo vegetarian and a mixed diet. Med Sci Sport Exerc 24:1290–1297. https://doi.org/10.1249/00005768-199211000-00015

    Article  CAS  Google Scholar 

  10. Wells AM, Haub MD, Fluckey J et al (2003) Comparisons of vegetarian and beef-containing diets on hematological indexes and iron stores during a period of resistive training in older men. J Am Diet Assoc 103:594–601. https://doi.org/10.1053/jada.2003.50112

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jäger R, Kerksick CM, Campbell BI et al (2017) (2017) International society of sports nutrition position stand: protein and exercise. J Int Soc Sport Nutr 141(14):1–25. https://doi.org/10.1186/S12970-017-0177-8

    Article  Google Scholar 

  12. Pelly FE, Burkhart SJ (2014) Dietary regimens of athletes competing at the Delhi 2010 Commonwealth Games. Int J Sport Nutr Exerc Metab 24:28–36. https://doi.org/10.1123/ijsnem.2013-0023

    Article  PubMed  Google Scholar 

  13. Williams C, Rollo I (2015) Carbohydrate nutrition and team sport performance. Sport Med 45:13–22. https://doi.org/10.1007/s40279-015-0399-3

    Article  Google Scholar 

  14. Kerksick CM, Arent S, Schoenfeld BJ et al (2017) International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. https://doi.org/10.1186/s12970-017-0189-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nieman DC (1988) Vegetarian dietary practices and endurance performance. Am J Clin Nutr 48:754–761. https://doi.org/10.1093/ajcn/48.3.754

    Article  CAS  PubMed  Google Scholar 

  16. Richter EA, Kiens B, Raben A et al (1991) Immune parameters in male athletes after a lacto-ovo vegetarian diet and a mixed Western diet. Med Sci Sports Exerc 23:517–521. https://doi.org/10.1249/00005768-199105000-00002

    Article  CAS  PubMed  Google Scholar 

  17. El-Sayed MS, Ali N, Ali ZE-S (2005) Haemorheology in exercise and training. Sport Med 35:649–670. https://doi.org/10.2165/00007256-200535080-00001

    Article  Google Scholar 

  18. Lenz C, Rebel A, WASCHKE KF, et al (2007) Blood viscosity modulates tissue perfusion—sometimes and somewhere. Transfus Altern Transfus Med 9:265–272. https://doi.org/10.1111/j.1778-428x.2007.00080.x

    Article  Google Scholar 

  19. Fuhrman J, Ferreri DM (2010) Fueling the vegetarian (vegan) athlete. Curr Sports Med Rep 9:233–241. https://doi.org/10.1249/jsr.0b013e3181e93a6f

    Article  PubMed  Google Scholar 

  20. Burke DG, Chilibeck PD, Parise G et al (2003) Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sport Exerc 35:1946–1955. https://doi.org/10.1249/01.mss.0000093614.17517.79

    Article  CAS  Google Scholar 

  21. Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S-1467S. https://doi.org/10.3945/ajcn.2010.28674f

    Article  CAS  PubMed  Google Scholar 

  22. Bangar P, Glahn RP, Liu Y et al (2017) Iron bioavailability in field pea seeds: correlations with iron, phytate, and carotenoids. Crop Sci 57:891–902. https://doi.org/10.2135/CROPSCI2016.08.0682

    Article  CAS  Google Scholar 

  23. Zhang YY, Stockmann R, Ng K, Ajlouni S (2022) Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit Rev Food Sci Nutr 62:1696–1712. https://doi.org/10.1080/10408398.2020.1846014

    Article  CAS  PubMed  Google Scholar 

  24. Skolmowska D, Głąbska D (2019) Analysis of heme and non-heme iron intake and iron dietary sources in adolescent menstruating females in a National Polish sample. Nutrients 11:1049. https://doi.org/10.3390/nu11051049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill PB, Wynder EL (1979) Effect of a vegetarian diet and dexamethasone on plasma prolactin, testosterone and dehydroepiandrosterone in men and women. Cancer Lett 7:273–282. https://doi.org/10.1016/s0304-3835(79)80054-3

    Article  CAS  PubMed  Google Scholar 

  26. Handelsman DJ, Hirschberg AL, Bermon S (2018) Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr Rev 39:803–829. https://doi.org/10.1210/er.2018-00020

    Article  PubMed  PubMed Central  Google Scholar 

  27. Melina V, Craig W, Levin S (2016) Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet 116:1970–1980. https://doi.org/10.1016/j.jand.2016.09.025

    Article  PubMed  Google Scholar 

  28. Lynch H, Wharton C, Johnston C (2016) Cardiorespiratory fitness and peak torque differences between vegetarian and omnivore endurance athletes: a cross-sectional study. Nutrients 8:726. https://doi.org/10.3390/nu8110726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibson-Smith E, Storey R, Ranchordas M (2020) Dietary intake, body composition and iron status in experienced and elite climbers. Front Nutr 7:122. https://doi.org/10.3389/fnut.2020.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phillips SM (2004) Protein requirements and supplementation in strength sports. Nutrition 20:689–695. https://doi.org/10.1016/j.nut.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  31. Bandegan A, Courtney-Martin G, Rafii M et al (2017) Indicator amino acid-derived estimate of dietary protein requirement for male bodybuilders on a nontraining day is several-fold greater than the current recommended dietary allowance. J Nutr 147:850–857. https://doi.org/10.3945/jn.116.236331

    Article  CAS  PubMed  Google Scholar 

  32. Bandegan A, Courtney-Martin G, Rafii M et al (2019) Indicator amino acid oxidation protein requirement estimate in endurance-trained men 24 h postexercise exceeds both the EAR and current athlete guidelines. Am J Physiol Endocrinol Metab 316:E741–E748. https://doi.org/10.1152/ajpendo.00174.2018

    Article  CAS  PubMed  Google Scholar 

  33. Morton RW, Murphy KT, McKellar SR et al (2018) A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 52:376–384. https://doi.org/10.1136/BJSPORTS-2017-097608

    Article  PubMed  Google Scholar 

  34. Foster M, Chu A, Petocz P, Samman S (2013) Effect of vegetarian diets on zinc status: a systematic review and meta-analysis of studies in humans. J Sci Food Agric 93:2362–2371. https://doi.org/10.1002/jsfa.6179

    Article  CAS  PubMed  Google Scholar 

  35. Prasad AS, Mantzoros CS, Beck FW et al (1996) Zinc status and serum testosterone levels of healthy adults. Nutrition 12:344–348. https://doi.org/10.1016/s0899-9007(96)80058-x

    Article  CAS  PubMed  Google Scholar 

  36. Pettersen BJ, Anousheh R, Fan J et al (2012) Vegetarian diets and blood pressure among white subjects: results from the Adventist Health Study-2 ({AHS}-2). Public Health Nutr 15:1909–1916. https://doi.org/10.1017/s1368980011003454

    Article  PubMed  Google Scholar 

  37. Tonstad S, Stewart K, Oda K et al (2013) Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 23:292–299. https://doi.org/10.1016/j.numecd.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  38. Tanumihardjo SA, Russell RM, Stephensen CB et al (2016) Biomarkers of nutrition for development (BOND)-vitamin a review. J Nutr 146:1816S-S1848. https://doi.org/10.3945/jn.115.229708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hickenbottom SJ, Follett JR, Lin Y et al (2002) Variability in conversion of beta-carotene to vitamin A in men as measured by using a double-tracer study design. Am J Clin Nutr 75:900–907. https://doi.org/10.1093/ajcn/75.5.900

    Article  CAS  PubMed  Google Scholar 

  40. Kepka A, Ochocinska A, Borzym-Kluczyk M et al (2020) Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients. https://doi.org/10.3390/nu12071987

    Article  PubMed  PubMed Central  Google Scholar 

  41. Benvenga S (2005) Effects of L-carnitine on thyroid hormone metabolism and on physical exercise tolerance. Horm Metab Res 37:566–571. https://doi.org/10.1055/s-2005-870424

    Article  CAS  PubMed  Google Scholar 

  42. Takic M, Pokimica B, Petrovic-Oggiano G, Popovic T (2022) Effects of dietary α-linolenic acid treatment and the efficiency of its conversion to eicosapentaenoic and docosahexaenoic acids in obesity and related diseases. Molecules. https://doi.org/10.3390/molecules27144471

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang S-Y, Li X-J, Zhang W et al (2012) Chinese lacto-vegetarian diet exerts favorable effects on metabolic parameters, intima-media thickness, and cardiovascular risks in healthy men. Nutr Clin Pract 27:392–398. https://doi.org/10.1177/0884533611436173

    Article  PubMed  Google Scholar 

  44. Mangels R, Messina V, Messina M (2021) The dietitian's guide to vegetarian diets: issues and applications. Jones & Bartlett Learning.

  45. Appleby P, Roddam A, Allen N, Key T (2007) Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr 61:1400–1406. https://doi.org/10.1038/sj.ejcn.1602659

    Article  CAS  PubMed  Google Scholar 

  46. Tong TYN, Appleby PN, Armstrong MEG et al (2020) Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. BMC Med 18:353. https://doi.org/10.1186/s12916-020-01815-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blancquaert L, Baguet A, Bex T et al (2018) Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr 119:759–770. https://doi.org/10.1017/S000711451800017X

    Article  CAS  PubMed  Google Scholar 

  48. Drew M, Vlahovich N, Hughes D et al (2017) Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. Br J Sports Med 52:47–53. https://doi.org/10.1136/bjsports-2017-098208

    Article  PubMed  Google Scholar 

  49. Drew MK, Vlahovich N, Hughes D et al (2017) A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J Sci Med Sport 20:745–750. https://doi.org/10.1016/j.jsams.2017.02.010

    Article  PubMed  Google Scholar 

  50. Tonstad S, Butler T, Yan R, Fraser GE (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32:791–796. https://doi.org/10.2337/dc08-1886

    Article  PubMed  PubMed Central  Google Scholar 

  51. Spencer EA, Appleby PN, Davey GK, Key TJ (2003) Diet and body mass index in 38 000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes 27:728–734. https://doi.org/10.1038/sj.ijo.0802300

    Article  CAS  Google Scholar 

  52. Newby PK, Tucker KL, Wolk A (2005) Risk of overweight and obesity among semivegetarian, lactovegetarian, and vegan women. Am J Clin Nutr 81:1267–1274. https://doi.org/10.1093/ajcn/81.6.1267

    Article  CAS  PubMed  Google Scholar 

  53. Orlich MJ, Singh PN, Sabaté J et al (2013) Vegetarian dietary patterns and mortality in adventist health study 2. JAMA Intern Med 173:1230. https://doi.org/10.1001/jamainternmed.2013.6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang T, Yang B, Zheng J et al (2012) Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab 60:233–240. https://doi.org/10.1159/000337301

    Article  CAS  PubMed  Google Scholar 

  55. Tantamango-Bartley Y, Knutsen SF, Knutsen R et al (2015) Are strict vegetarians protected against prostate cancer? Am J Clin Nutr 103:153–160. https://doi.org/10.3945/ajcn.114.106450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y-J, Gan R-Y, Li S et al (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20:21138–21156. https://doi.org/10.3390/molecules201219753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thakur VS, Deb G, Babcook MA, Gupta S (2013) Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J 16:151–163. https://doi.org/10.1208/s12248-013-9548-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malaguarnera, (2019) Influence of resveratrol on the immune response. Nutrients 11:946. https://doi.org/10.3390/nu11050946

    Article  CAS  PubMed  Google Scholar 

  59. Haghighatdoost F, Bellissimo N, de Zepetnek JOT, Rouhani MH (2017) Association of vegetarian diet with inflammatory biomarkers: a systematic review and meta-analysis of observational studies. Public Health Nutr 20:2713–2721. https://doi.org/10.1017/s1368980017001768

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bingham SA, Day NE, Luben R et al (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361:1496–1501. https://doi.org/10.1016/s0140-6736(03)13174-1

    Article  PubMed  Google Scholar 

  61. World Cancer Research (2007) Fund food, nutrition, physical activity, and the prevention of cancer: a global perspective. Ernährung - Wiss und Prax 1:464–469. https://doi.org/10.1007/s12082-007-0105-4

    Article  Google Scholar 

  62. World Cancer Research Fund (2011) Continuous update project report. Food, nutrition, physical activity, and the prevention of colorectal cancer. https://www.wkof.nl/sites/default/files/Colorectal-Cancer-2011-Report.pdf

  63. Crowe FL, Appleby PN, Travis RC, Key TJ (2013) Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr 97:597–603. https://doi.org/10.3945/ajcn.112.044073

    Article  CAS  PubMed  Google Scholar 

  64. Bradbury KE, Crowe FL, Appleby PN et al (2013) Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans. Eur J Clin Nutr 68:178–183. https://doi.org/10.1038/ejcn.2013.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang F, Zheng J, Yang B et al (2015) Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. https://doi.org/10.1161/jaha.115.002408

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yokoyama Y, Nishimura K, Barnard ND et al (2014) Vegetarian diets and blood pressure. JAMA Intern Med 174:577. https://doi.org/10.1001/jamainternmed.2013.14547

    Article  PubMed  Google Scholar 

  67. Appleby PN, Davey GK, Key TJ (2002) Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC–Oxford. Public Health Nutr 5:645–654. https://doi.org/10.1079/phn2002332

    Article  PubMed  Google Scholar 

  68. Österdahl M, Kocturk T, Koochek A, Wändell PE (2007) Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur J Clin Nutr 62:682–685. https://doi.org/10.1038/sj.ejcn.1602790

    Article  CAS  PubMed  Google Scholar 

  69. Whalen KA, Judd S, McCullough ML et al (2017) Paleolithic and mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr 147:612–620. https://doi.org/10.3945/jn.116.241919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jönsson T, Granfeldt Y, Ahrén B et al (2009) Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 8:35. https://doi.org/10.1186/1475-2840-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frassetto LA, Schloetter M, Mietus-Synder M et al (2009) Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr 63:947–955. https://doi.org/10.1038/ejcn.2009.4

    Article  CAS  PubMed  Google Scholar 

  72. Shaw KA, Zello GA, Rodgers CD et al (2022) Benefits of a plant-based diet and considerations for the athlete. Eur J Appl Physiol 122:1163–1178. https://doi.org/10.1007/s00421-022-04902-w

    Article  PubMed  Google Scholar 

  73. Campbell WW, Barton ML, Cyr-Campbell D et al (1999) Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr 70:1032–1039. https://doi.org/10.1093/ajcn/70.6.1032

    Article  CAS  PubMed  Google Scholar 

  74. Veleba J, Matoulek M, Hill M et al (2016) “A vegetarian vs. conventional hypocaloric diet: the effect on physical fitness in response to aerobic exercise in patients with type 2 diabetes.” A parallel randomized study. Nutrients. https://doi.org/10.3390/nu8110671

    Article  PubMed  PubMed Central  Google Scholar 

  75. Baguet A, Everaert I, De NH et al (2011) Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur J Appl Physiol 111:2571–2580. https://doi.org/10.1007/s00421-011-1877-4

    Article  CAS  PubMed  Google Scholar 

  76. Page J, Erskine RM, Hopkins ND (2022) Skeletal muscle properties and vascular function do not differ between healthy, young vegan and omnivorous men. Eur J Sport Sci 22:559–568. https://doi.org/10.1080/17461391.2021.1923814

    Article  PubMed  Google Scholar 

  77. Hevia-Larraín V, Gualano B, Longobardi I et al (2021) High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: a comparison between habitual vegans and omnivores. Sports Med 51:1317–1330. https://doi.org/10.1007/s40279-021-01434-9

    Article  PubMed  Google Scholar 

  78. Boutros GH, Landry-Duval M-A, Garzon M, Karelis AD (2020) Is a vegan diet detrimental to endurance and muscle strength? Eur J Clin Nutr 74:1550–1555. https://doi.org/10.1038/s41430-020-0639-y

    Article  CAS  PubMed  Google Scholar 

  79. Durkalec-Michalski K, Domagalski A, Główka N et al (2022) Effect of a four-week vegan diet on performance, training efficiency and blood biochemical indices in crossfit-trained participants. Nutrients. https://doi.org/10.3390/nu14040894

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wirnitzer KC, Kornexl E (2014) Energy and macronutrient intake of a female vegan cyclist during an 8-day mountain bike stage race. Baylor Univ Med Cent Proc 27:42–45. https://doi.org/10.1080/08998280.2014.11929052

    Article  Google Scholar 

  81. Leischik R, Spelsberg N (2014) Vegan triple-ironman (raw vegetables/fruits). Case Reports Cardiol 2014:1–4. https://doi.org/10.1155/2014/317246

    Article  Google Scholar 

  82. Davey D, Malone S, Egan B (2021) Case study: transition to a vegan diet in an elite male gaelic football player. Sport 9:6

    Article  Google Scholar 

  83. Hernández-Martínez C, Fernández-Rodríguez L, Soriano MA, Martínez-Sanz JM (2020) Case study: body composition changes resulting from a nutritional intervention on a professional vegan powerlifter. Appl Sci 10:8675. https://doi.org/10.3390/APP10238675

    Article  Google Scholar 

  84. Devries MC, Phillips SM (2014) Creatine supplementation during resistance training in older adults—a meta-analysis. Med Sci Sport Exerc 46:1194–1203. https://doi.org/10.1249/mss.0000000000000220

    Article  CAS  Google Scholar 

  85. Jacobs DRJ, Steffen LM (2003) Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr 78:508S-513S. https://doi.org/10.1093/ajcn/78.3.508S

    Article  CAS  PubMed  Google Scholar 

  86. Messina M, Lampe JW, Birt DF et al (2001) Reductionism and the narrowing nutrition perspective: time for reevaluation and emphasis on food synergy. J Am Diet Assoc 101:1416–1419. https://doi.org/10.1016/S0002-8223(01)00342-X

    Article  CAS  PubMed  Google Scholar 

  87. Jacobs DRJ, Gross MD, Tapsell LC (2009) Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89:1543S-1548S. https://doi.org/10.3945/ajcn.2009.26736B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hall KD, Ayuketah A, Brychta R et al (2019) Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 30:67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haub MD, Wells AM, Tarnopolsky MA, Campbell WW (2002) Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men. Am J Clin Nutr 76:511–517. https://doi.org/10.1093/ajcn/76.3.511

    Article  CAS  PubMed  Google Scholar 

  90. Devrim-Lanpir A, İlktaç HY, Wirnitzer K et al (2021) Vegan vs. omnivore diets paradox: a whole-metagenomic approach for defining metabolic networks during the race in ultra-marathoners- a before and after study design. PLoS One 16:e0255952. https://doi.org/10.1371/journal.pone.0255952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pohl A, Schünemann F, Bersiner K, Gehlert S (2021) The impact of vegan and vegetarian diets on physical performance and molecular signaling in skeletal muscle. Nutrients. https://doi.org/10.3390/nu13113884

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rizzo NS, Sabaté J, Jaceldo-Siegl K, Fraser GE (2011) Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome. Diabetes Care 34:1225–1227. https://doi.org/10.2337/dc10-1221

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sinha R, Cross AJ, Graubard BI et al (2009) Meat intake and mortality. Arch Intern Med 169:562. https://doi.org/10.1001/archinternmed.2009.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed the literature review. S.M., H.L., M.G., A.U., and L.O. wrote the main manuscript. S.M. designed the figure and table. All authors reviewed the manuscript.

Corresponding author

Correspondence to Stephen P. Maier II.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval and Informed consent

This study was conducted within the agreed upon standards of expected ethical behavior. As there was no involvement of human subjects, consent was not needed to proceed with the investigation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, S.P., Lightsey, H.M., Galetta, M.D. et al. Plant-based diets and sports performance: a clinical review. Sport Sci Health 19, 1059–1081 (2023). https://doi.org/10.1007/s11332-023-01074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-023-01074-8

Keywords

Navigation