Skip to main content

Advertisement

Log in

Impact of exercise on brain neurochemicals: a comprehensive review

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Physical activity influences neuro-cognition through organic and peptide molecules of the brain. The organic molecules constitute neurotransmitters and neuromodulators while the peptide molecules include neurotrophic factors. Regular exercise, when repeated overtime, may cause the baseline neurochemical level to rise or fall and help in improvement of neuro-cognition. Several outstanding reviews have summarized these findings; however, the neurobiological basis of these results has received less attention.

Aim

To explore the emergence and effects of physical exercise on three signaling pathways i.e., the neurotransmitters, neurotrophins and neuromodulators.

Methods

To fulfill the purpose of the study, several robust literatures were reviewed based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Studies that directly matched and fulfilled the primary objective were screened, appraised and presented in a systematic and comprehensive manner.

Results

Chronic exercise and long-term training showed exponential rise in all the three types of neurochemicals. While aerobic and graded exercise depicted linear rise in neurotransmitters and strength, training showed no significant changes in neurotrophins.

Conclusions

The comprehension of exercise and its positive effect on neurochemicals in the improvement of neuro-cognition, neurogenesis and brain functions have been pooled in this study. Single bouts of exercise have been given equal pertinence as chronic exercise in development of a complete psychophysiological well-being. This review magnifies that aerobic exercise of moderate intensity when performed in a regular and precise way improves all three classes of neurochemicals and modulates mental health and wellness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This is a Reiew Paper and the data has been made available in the Tables as pooled evidence. There is no other data that has to be made avaible. All the data has been made available.

References

  1. van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32(5):283–290. https://doi.org/10.1016/j.tins.2008.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472. https://doi.org/10.1016/j.tins.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  3. Kramer AF, Erickson KI (2007) Effects of physical activity on cognition, well-being, and brain: human interventions. Alzheimers Dement 3(2 Suppl):S45–S51. https://doi.org/10.1016/j.jalz.2007.01.008

    Article  PubMed  Google Scholar 

  4. Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101. https://doi.org/10.1016/j.brainres.2012.02.068

    Article  CAS  PubMed  Google Scholar 

  5. Sarbadhikari SN, Saha AK (2006) Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: a hypothesis. Theor Biol Med Model 3:33. https://doi.org/10.1186/1742-4682-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188. https://doi.org/10.2165/00007256-199520030-00004

    Article  CAS  PubMed  Google Scholar 

  7. Basso JC, Suzuki WA (2017) The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plast 2(2):127–152. https://doi.org/10.3233/BPL-160040

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leeuwenburgh C, Heinecke JW (2001) Oxidative stress and antioxidants in exercise. Curr Med Chem 8(7):829–838. https://doi.org/10.2174/0929867013372896

    Article  CAS  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guyatt G, Oxman AD, Akl EA et al (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64(4):383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  11. Huang X, Lin J, Demner-Fushman D (2006) Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annu Symp Proc 2006:359–363

    PubMed  PubMed Central  Google Scholar 

  12. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantai AS, McNamara JO, Williams SM (eds) (2001) Neuroscience, 2nd edn. Sinauer, Sunderland, https://www.ncbi.nlm.nih.gov/books/NBK10799/.

  13. Kreko-Pierce T, Eaton BA (2018) Rejuvenation of the aged neuromuscular junction by exercise. Cell Stress 2(2):25–33. https://doi.org/10.15698/cst2018.02.123

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deschenes MR (2019) Adaptations of the neuromuscular junction to exercise training. Curr Opin Physiol. https://doi.org/10.1016/j.cophys.2019.02.004

    Article  Google Scholar 

  15. Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A et al (2019) L-lactate promotes adult hippocampal neurogenesis. Front Neurosci 13:403. https://doi.org/10.3389/fnins.2019.00403

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Ruchti E, Petit JM et al (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 111(33):12228–12233. https://doi.org/10.1073/pnas.1322912111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schurr A (2014) Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 8:360. https://doi.org/10.3389/fnins.2014.00360

    Article  PubMed  PubMed Central  Google Scholar 

  18. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signaling molecule. Nat Rev Neurosci 19(4):235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  19. Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54(6):609–614. https://doi.org/10.1042/cs0540609

    Article  CAS  PubMed  Google Scholar 

  20. Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242(3):631–636. https://doi.org/10.1042/bj2420631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hampe CS, Mitoma H, Manto M (2017) GABA and glutamate: their transmitter role in the CNS and pancreatic islets. In: Samardzic J (ed) GABA and glutamate–new developments in neurotransmission research. IntechOpen, London, https://doi.org/10.5772/intechopen.70958.

  22. Maddock RJ, Casazza GA, Fernandez DH, Maddock MI (2016) Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci 36(8):2449–2457. https://doi.org/10.1523/JNEUROSCI.3455-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR (1866) Gil-Mohapel J (2020) Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 8:165821. https://doi.org/10.1016/j.bbadis.2020.165821

    Article  CAS  Google Scholar 

  24. Avery MC, Krichmar JL (2017) Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits 11:108. https://doi.org/10.3389/fncir.2017.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin TW, Kuo YM (2013) Exercise benefits brain function: the monoamine connection. Brain Sci 3(1):39–53. https://doi.org/10.3390/brainsci3010039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Höglund E, Øverli Ø, Winberg S (2019) Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol (Lausanne) 10:158. https://doi.org/10.3389/fendo.2019.00158

    Article  PubMed  Google Scholar 

  27. Patrick RP, Ames BN (2015) Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 29(6):2207–2222. https://doi.org/10.1096/fj.14-268342

    Article  CAS  PubMed  Google Scholar 

  28. Dalal R, Grujic D (2021) Epinephrine. In: StatPearls. StatPearls Publishing, Treasure Island

  29. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38(5):401–423. https://doi.org/10.2165/00007256-200838050-00004

    Article  PubMed  Google Scholar 

  30. Conlay LA, Sabounjian LA, Wurtman RJ (1992) Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med 13(Suppl 1):S141–S142. https://doi.org/10.1055/s-2007-1024619

    Article  PubMed  Google Scholar 

  31. Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19(10):2581–2603. https://doi.org/10.1162/neco.2007.19.10.2581

    Article  PubMed  Google Scholar 

  32. Buzsáki G, Chrobak JJ (2005) Synaptic plasticity and self-organization in the hippocampus. Nat Neurosci 8(11):1418–1420. https://doi.org/10.1038/nn1105-1418

    Article  CAS  PubMed  Google Scholar 

  33. Hartley LH, Mason JW, Hogan RP et al (1972) Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol 33(5):607–610. https://doi.org/10.1152/jappl.1972.33.5.607

    Article  CAS  PubMed  Google Scholar 

  34. Winder WW, Hagberg JM, Hickson RC, Ehsani AA, McLane JA (1978) Time course of sympathoadrenal adaptation to endurance exercise training in man. J Appl Physiol Respir Environ Exerc Physiol 45(3):370–374. https://doi.org/10.1152/jappl.1978.45.3.370

    Article  CAS  PubMed  Google Scholar 

  35. Winder WW, Hickson RC, Hagberg JM, Ehsani AA, McLane JA (1979) Training-induced changes in hormonal and metabolic responses to submaximal exercise. J Appl Physiol Respir Environ Exerc Physiol 46(4):766–771. https://doi.org/10.1152/jappl.1979.46.4.766

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann M, Dickhuth HH, Schmid P, Porzig H, Keul J (1984) Plasma catecholamines, beta-adrenergic receptors, and isoproterenol sensitivity in endurance trained and non-endurance trained volunteers. Eur J Appl Physiol Occup Physiol 52(4):362–369. https://doi.org/10.1007/BF00943364

    Article  CAS  PubMed  Google Scholar 

  37. Fleg JL, Tzankoff SP, Lakatta EG (1985) Age-related augmentation of plasma catecholamines during dynamic exercise in healthy males. J Appl Physiol 59(4):1033–1039. https://doi.org/10.1152/jappl.1985.59.4.1033

    Article  CAS  PubMed  Google Scholar 

  38. Brooks S, Burrin J, Cheetham ME, Hall GM, Yeo T, Williams C (1988) The responses of the catecholamines and beta-endorphin to brief maximal exercise in man. Eur J Appl Physiol Occup Physiol 57(2):230–234. https://doi.org/10.1007/BF00640668

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz L, Kindermann W (1989) Beta-endorphin, catecholamines, and cortisol during exhaustive endurance exercise. Int J Sports Med 10(5):324–328. https://doi.org/10.1055/s-2007-1024922

    Article  CAS  PubMed  Google Scholar 

  40. Rogers PJ, Tyce GM, Weinshilboum RM, O’Connor DT, Bailey KR, Bove AA (1991) Catecholamine metabolic pathways and exercise training. Plasma and urine catecholamines, metabolic enzymes, and chromogranin-A. Circulation 84(6):2346–2356. https://doi.org/10.1161/01.cir.84.6.2346

    Article  CAS  PubMed  Google Scholar 

  41. Kohrt WM, Spina RJ, Ehsani AA, Cryer PE, Holloszy JO (1993) Effects of age, adiposity, and fitness level on plasma catecholamine responses to standing and exercise. J Appl Physiol 75(4):1828–1835. https://doi.org/10.1152/jappl.1993.75.4.1828

    Article  CAS  PubMed  Google Scholar 

  42. Greiwe JS, Hickner RC, Shah SD, Cryer PE, Holloszy JO (1999) Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J Appl Physiol 86(2):531–535. https://doi.org/10.1152/jappl.1999.86.2.531

    Article  CAS  PubMed  Google Scholar 

  43. Strobel G, Friedmann B, Siebold R, Bärtsch P (1999) Effect of severe exercise on plasma catecholamines in differently trained athletes. Med Sci Sports Exerc 31(4):560–565. https://doi.org/10.1097/00005768-199904000-00011

    Article  CAS  PubMed  Google Scholar 

  44. Jacob C, Zouhal H, Vincent S et al (2002) Training status (endurance or sprint) and catecholamine response to the Wingate-test in women. Int J Sports Med 23(5):342–347. https://doi.org/10.1055/s-2002-33139

    Article  CAS  PubMed  Google Scholar 

  45. Jacob C, Zouhal H, Prioux J, Gratas-Delamarche A, Bentué-Ferrer D, Delamarche P (2004) Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. Eur J Appl Physiol 91(1):35–40. https://doi.org/10.1007/s00421-003-1002-4

    Article  CAS  PubMed  Google Scholar 

  46. Botcazou M, Zouhal H, Jacob C et al (2006) Effect of training and detraining on catecholamine responses to sprint exercise in adolescent girls. Eur J Appl Physiol 97(1):68–75. https://doi.org/10.1007/s00421-006-0131-y

    Article  CAS  PubMed  Google Scholar 

  47. Winter B, Breitenstein C, Mooren FC et al (2007) High impact running improves learning. Neurobiol Learn Mem 87(4):597–609. https://doi.org/10.1016/j.nlm.2006.11.003

    Article  PubMed  Google Scholar 

  48. Wochyński Z, Sobiech K (2017) Impact of special aviation gymnastics instruments training on selected hormones in cadets’ blood serum and plasma. Int J Occup Med Environ Health 30(4):655–664. https://doi.org/10.13075/ijomeh.1896.00904

    Article  PubMed  Google Scholar 

  49. Hempstead BL (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 3(1):19–24. https://doi.org/10.2174/156720506775697061

    Article  CAS  PubMed  Google Scholar 

  50. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564. https://doi.org/10.1098/rstb.2006.1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Phillips C, Baktir MA, Srivatsan M, Salehi A (2014) Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 8:170. https://doi.org/10.3389/fncel.2014.00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gligoroska JP, Manchevska S (2012) The effect of physical activity on cognition - physiological mechanisms. Mater Sociomed 24(3):198–202. https://doi.org/10.5455/msm.2012.24.198-202

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lista I, Sorrentino G (2010) Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 30(4):493–503. https://doi.org/10.1007/s10571-009-9488-x

    Article  CAS  PubMed  Google Scholar 

  55. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21(5):1628–1634. https://doi.org/10.1523/JNEUROSCI.21-05-01628.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084

    Article  CAS  PubMed  Google Scholar 

  58. Schwarz AJ, Brasel JA, Hintz RL, Mohan S, Cooper DM (1996) Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab 81(10):3492–3497. https://doi.org/10.1210/jcem.81.10.8855791

    Article  CAS  PubMed  Google Scholar 

  59. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985. https://doi.org/10.1126/science.6823562

    Article  CAS  PubMed  Google Scholar 

  60. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6(2):209. https://doi.org/10.1186/gb-2005-6-2-209

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kraus RM, Stallings HW 3rd, Yeager RC, Gavin TP (2003) Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol 96(4):1445–1450. https://doi.org/10.1152/japplphysiol.01031.2003

    Article  PubMed  Google Scholar 

  62. Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18(10):2803–2812. https://doi.org/10.1111/j.1460-9568.2003.03041.x

    Article  PubMed  Google Scholar 

  63. Shohayeb B, Diab M, Ahmed M, Ng DCH (2018) Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 7:4. https://doi.org/10.1186/s40035-018-0109-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39(4):728–734. https://doi.org/10.1249/mss.0b013e31802f04c7

    Article  CAS  PubMed  Google Scholar 

  65. Schiffer T, Schulte S, Hollmann W, Bloch W, Strüder HK (2009) Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res 41(3):250–254. https://doi.org/10.1055/s-0028-1093322

    Article  CAS  PubMed  Google Scholar 

  66. Seifert T, Brassard P, Wissenberg M et al (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372–R377. https://doi.org/10.1152/ajpregu.00525.2009

    Article  CAS  PubMed  Google Scholar 

  67. Goekint M, De Pauw K, Roelands B et al (2010) Strength training does not influence serum brain-derived neurotrophic factor. Eur J Appl Physiol 110(2):285–293. https://doi.org/10.1007/s00421-010-1461-3

    Article  CAS  PubMed  Google Scholar 

  68. Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022. https://doi.org/10.1073/pnas.1015950108

    Article  PubMed  PubMed Central  Google Scholar 

  69. Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104(5):934–941. https://doi.org/10.1016/j.physbeh.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  70. Ruscheweyh R, Willemer C, Krüger K et al (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32(7):1304–1319. https://doi.org/10.1016/j.neurobiolaging.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  71. Heyman E, Gamelin FX, Goekint M et al (2012) Intense exercise increases circulating endocannabinoid and BDNF levels in humans–possible implications for reward and depression. Psychoneuroendocrinology 37(6):844–851. https://doi.org/10.1016/j.psyneuen.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  72. Cha HJ, Kim KB, Baek SY (2022) Square-stepping exercise program effects on fall-related fitness and BDNF levels in older adults in Korea: a randomized controlled trial. Int J Environ Res Public Health 19(12):7033. https://doi.org/10.3390/ijerph19127033

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schmolesky MT, Webb DL, Hansen RA (2013) The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J Sports Sci Med 12(3):502–511

    PubMed  PubMed Central  Google Scholar 

  74. Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC (2014) Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology 41:121–131. https://doi.org/10.1016/j.psyneuen.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  75. Leckie RL, Oberlin LE, Voss MW et al (2014) BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci 8:985. https://doi.org/10.3389/fnhum.2014.00985

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saucedo Marquez CM, Vanaudenaerde B, Troosters T (1985) Wenderoth N (2015) High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol 119(12):1363–1373. https://doi.org/10.1152/japplphysiol.00126.2015

    Article  CAS  Google Scholar 

  77. Hötting K, Schickert N, Kaiser J, Röder B, Schmidt-Kassow M (2016) The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plast 2016:6860573. https://doi.org/10.1155/2016/6860573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De la Rosa A, Solana E, Corpas R et al (2019) Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Sci Rep 9(1):3337. https://doi.org/10.1038/s41598-019-40040-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kujach S, Olek RA, Byun K et al (2020) Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Front Neurosci 13:1455. https://doi.org/10.3389/fnins.2019.01455

    Article  PubMed  PubMed Central  Google Scholar 

  80. Arazi H, Babaei P, Moghimi M, Asadi A (2021) Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr 21(1):50. https://doi.org/10.1186/s12877-020-01937-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang DW, Bressel E, Kim DY (2020) Effects of aquatic exercise on insulin-like growth factor-1, brain-derived neurotrophic factor, vascular endothelial growth factor, and cognitive function in elderly women. Exp Gerontol 132:110842. https://doi.org/10.1016/j.exger.2020.110842

    Article  CAS  PubMed  Google Scholar 

  82. Poehlman ET, Rosen CJ, Copeland KC (1994) The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism 43(11):1401–1405. https://doi.org/10.1016/0026-0495(94)90035-3

    Article  CAS  PubMed  Google Scholar 

  83. Cappon J, Brasel JA, Mohan S (1985) Cooper DM (1994) Effect of brief exercise on circulating insulin-like growth factor I. J Appl Physiol 76(6):2490–2496. https://doi.org/10.1152/jappl.1994.76.6.2490

    Article  Google Scholar 

  84. Elias AN, Pandian MR, Wang L, Suarez E, James N, Wilson AF (2000) Leptin and IGF-I levels in unconditioned male volunteers after short-term exercise. Psychoneuroendocrinology 25(5):453–461. https://doi.org/10.1016/s0306-4530(99)00070-0

    Article  CAS  PubMed  Google Scholar 

  85. Chadan SG, Dill RP, Vanderhoek K, Parkhouse WS (1999) Influence of physical activity on plasma insulin-like growth factor-1 and insulin-like growth factor binding proteins in healthy older women. Mech Ageing Dev 109(1):21–34. https://doi.org/10.1016/s0047-6374(99)00017-2

    Article  CAS  PubMed  Google Scholar 

  86. Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C (1999) Responses of total and free insulin-like growth factor-I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta Physiol Scand 165(1):51–56. https://doi.org/10.1046/j.1365-201x.1999.00471.x

    Article  CAS  PubMed  Google Scholar 

  87. Borst SE, De Hoyos DV, Garzarella L et al (2001) Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med Sci Sports Exerc 33(4):648–653. https://doi.org/10.1097/00005768-200104000-00021

    Article  CAS  PubMed  Google Scholar 

  88. Chicharro JL, López-Calderon A, Hoyos J et al (2001) Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. Br J Sports Med 35(5):303–307. https://doi.org/10.1136/bjsm.35.5.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nindl BC, Kraemer WJ, Marx JO et al (1985) (2001) Overnight responses of the circulating IGF-I system after acute, heavy-resistance exercise. J Appl Physiol 90(4):1319–1326. https://doi.org/10.1152/jappl.2001.90.4.1319

    Article  Google Scholar 

  90. Jeon YK, Ha CH (2015) Expression of brain-derived neurotrophic factor, IGF-1 and cortisol elicited by regular aerobic exercise in adolescents. J Phys Ther Sci 27(3):737–741. https://doi.org/10.1589/jpts.27.737

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kraemer WJ, Aguilera BA, Terada M et al (1985) (1995) Responses of IGF-I to endogenous increases in growth hormone after heavy-resistance exercise. J Appl Physiol 79(4):1310–1315. https://doi.org/10.1152/jappl.1995.79.4.1310

    Article  Google Scholar 

  92. Gustafsson T, Knutsson A, Puntschart A et al (2002) Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Arch 444(6):752–759. https://doi.org/10.1007/s00424-002-0845-6

    Article  CAS  PubMed  Google Scholar 

  93. Dietrich A (2004) Neurocognitive mechanisms underlying the experience of flow. Conscious Cogn 13(4):746–761. https://doi.org/10.1016/j.concog.2004.07.002

    Article  PubMed  Google Scholar 

  94. French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport 8(3):649–652. https://doi.org/10.1097/00001756-199702100-00014

    Article  CAS  PubMed  Google Scholar 

  95. Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81(2):263–284. https://doi.org/10.1016/j.pbb.2005.01.032

    Article  CAS  PubMed  Google Scholar 

  96. Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341(1):39–44. https://doi.org/10.1016/s0014-2999(97)01442-8

    Article  CAS  PubMed  Google Scholar 

  97. Garcia N Jr, Járai Z, Mirshahi F, Kunos G, Sanyal AJ (2001) Systemic and portal hemodynamic effects of anandamide. Am J Physiol Gastrointest Liver Physiol 280(1):G14–G20. https://doi.org/10.1152/ajpgi.2001.280.1.G14

    Article  CAS  PubMed  Google Scholar 

  98. Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P (2016) Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 310(7):H785–H801. https://doi.org/10.1152/ajpheart.00571.2015

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wagner JA, Hu K, Bauersachs J et al (2001) Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol 38(7):2048–2054. https://doi.org/10.1016/s0735-1097(01)01671-0

    Article  CAS  PubMed  Google Scholar 

  100. Calignano A, La Rana G, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394(6690):277–281. https://doi.org/10.1038/28393

    Article  CAS  PubMed  Google Scholar 

  101. Carr DB, Bullen BA, Skrinar GS et al (1981) Physical conditioning facilitates the exercise-induced secretion of beta-endorphin and beta-lipotropin in women. N Engl J Med 305(10):560–563. https://doi.org/10.1056/NEJM198109033051006

    Article  CAS  PubMed  Google Scholar 

  102. Howlett TA, Tomlin S, Ngahfoong L et al (1984) Release of beta endorphin and met-enkephalin during exercise in normal women: response to training. Br Med J (Clin Res Ed) 288(6435):1950–1952. https://doi.org/10.1136/bmj.288.6435.1950

    Article  CAS  PubMed  Google Scholar 

  103. Farrell PA, Kjaer M, Bach FW, Galbo H (1987) Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand 130(4):619–625. https://doi.org/10.1111/j.1748-1716.1987.tb08184.x

    Article  CAS  PubMed  Google Scholar 

  104. Rahkila P, Hakala E, Alén M, Salminen K, Laatikainen T (1988) Beta-endorphin and corticotropin release is dependent on a threshold intensity of running exercise in male endurance athletes. Life Sci 43(6):551–558. https://doi.org/10.1016/0024-3205(88)90158-0

    Article  CAS  PubMed  Google Scholar 

  105. Goldfarb AH, Hatfield BD, Armstrong D, Potts J (1990) Plasma beta-endorphin concentration: response to intensity and duration of exercise. Med Sci Sports Exerc 22(2):241–244

    CAS  PubMed  Google Scholar 

  106. Pierce EF, Eastman NW, Tripathi HL, Olson KG, Dewey WL (1993) Beta-endorphin response to endurance exercise: relationship to exercise dependence. Percept Mot Skills 77(3 Pt 1):767–770. https://doi.org/10.2466/pms.1993.77.3.767

    Article  CAS  PubMed  Google Scholar 

  107. Kraemer WJ, Dziados JE, Marchitelli LJ et al (1993) (1993) Effects of different heavy-resistance exercise protocols on plasma beta-endorphin concentrations. J Appl Physiol 74(1):450–459. https://doi.org/10.1152/jappl.1993.74.1.450

    Article  CAS  PubMed  Google Scholar 

  108. Heitkamp HC, Schmid K, Scheib K (1993) Beta-endorphin and adrenocorticotropic hormone production during marathon and incremental exercise. Eur J Appl Physiol Occup Physiol 66(3):269–274. https://doi.org/10.1007/BF00235105

    Article  CAS  PubMed  Google Scholar 

  109. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. NeuroReport 14(17):2209–2211. https://doi.org/10.1097/00001756-200312020-00015

    Article  CAS  PubMed  Google Scholar 

  110. Raichlen DA, Foster AD, Seillier A, Giuffrida A, Gerdeman GL (2013) Exercise-induced endocannabinoid signaling is modulated by intensity. Eur J Appl Physiol 113(4):869–875. https://doi.org/10.1007/s00421-012-2495-5j

    Article  CAS  PubMed  Google Scholar 

  111. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. https://doi.org/10.1016/j.tics.2013.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  112. Matta Mello Portugal E, Cevada T, Sobral Monteiro-Junior R et al (2013) Neuroscience of exercise: from neurobiology mechanisms to mental health. Neuropsychobiology 68(1):1–14. https://doi.org/10.1159/000350946

    Article  PubMed  Google Scholar 

  113. Karakilic A, Yuksel O, Kizildag S et al (2021) Regular aerobic exercise increased VEGF levels in both soleus and gastrocnemius muscles correlated with hippocampal learning and VEGF levels. Acta Neurobiol Exp (Wars) 81(1):1–9. https://doi.org/10.21307/ane-2021-001

    Article  PubMed  Google Scholar 

  114. Schwarz L, Kindermann W (1992) Changes in beta-endorphin levels in response to aerobic and anaerobic exercise. Sports Med 13(1):25–36. https://doi.org/10.2165/00007256-199213010-00003

    Article  CAS  PubMed  Google Scholar 

  115. Siebers M, Biedermann SV, Fuss J (2022) Do endocannabinoids cause the runner’s high? Evidence and open questions. Neuroscientist. https://doi.org/10.1177/10738584211069981

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The center for digital library and documentation under the excellence of University Grants Commission (UGC), established a digital library management software D space, which has been a great help to access various research articles and repositories under the Jadavpur University domain. Thus, we would like to recognize the university and its system for this access. Inflibnet and Indest under Ministry of Human Resource Development, Government of India, also are worth a mention and acknowledgement.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All the authors PB, SC and DR have contributed equally in this research work drafting, and ideating the research was performed by PB and SC, while literature search and data analysis were done by PB and DR. The critical revision of the work was performed by SC.

Corresponding author

Correspondence to Sridip Chatterjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Ethical approval

This is a Review Article thus there is no Research involving Human Participants and/or Animals.

Informed consent

Thus no Informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, P., Chatterjee, S. & Roy, D. Impact of exercise on brain neurochemicals: a comprehensive review. Sport Sci Health 19, 405–452 (2023). https://doi.org/10.1007/s11332-022-01030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-022-01030-y

Keywords

Navigation