Skip to main content
Log in

Physical activity and fitness moderate the association between executive function and anti-correlated networks in the aging brain

Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Physical activity and fitness have been shown to be neuroprotective in the aging process, but the exact mechanisms underlying this neuroprotection need to be further evaluated. The current study sought to examine the influence of physical activity and fitness on the association between executive function and the strength of anti-correlated brain networks in community-dwelling older adults. Participants were 51 older adults (M = 73 years, SD = 6) who participated in neuropsychological testing, physical activity and fitness measurements, and magnetic resonance imaging (MRI). Moderated regression analysis was used to analyze the influence of physical activity and fitness on the association between cognitive performance and the anti-correlation between the Default Mode Network (DMN) and Dorsal Attention Network (DAN). There was a significant main effect of physical activity and fitness on executive function, and no main effect of DMN/DAN anti-correlations on executive function. There was a significant moderating effect of average steps and the 6-minute walk test (6MWT) on the relationship between DMN/DAN anti-correlations and executive function, suggesting that for individuals with the lowest levels of DMN/DAN anti-correlation, higher physical activity and fitness is associated with greater executive function. Results indicate physical activity and fitness may serve as protective factors for the aging brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130. https://doi.org/10.1111/1467-9280.t01-101430

    Article  PubMed  Google Scholar 

  2. Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S (2014) The impact of exercise on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev 16:12–31. https://doi.org/10.1016/j.arr.2014.05.002

    Article  PubMed  Google Scholar 

  3. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B (2018) Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 52:154–160. https://doi.org/10.1136/bjsports-2016-096587

    Article  PubMed  Google Scholar 

  4. Barnes DE, Blackwell T, Stone KL, Goldman SE, Hillier T, Yaffe K (2008) Cognition in older women: the importance of daytime movement. J Am Geriatr Soc 56:1658–1664. https://doi.org/10.1111/j.15325415.2008.01841.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iso-Markku P, Waller K, Vuoksimaa E, Vähä-Ypyä H, Lindgren N, Heikkilä K, Kujala UM (2018) Objectively measured physical activity profile and cognition in Finnish elderly twins. Alzheimers Dement 4:263–271. https://doi.org/10.1016/j.trci.2018.06.007

    Article  Google Scholar 

  6. Kerr J, Marshall SJ, Patterson RE, Marinac CR, Natarajan L, Rosenberg D, Crist K (2013) Objectively measured physical activity is related to cognitive function in older adults. J Am Geriatr Soc 61(11):1927–1931. https://doi.org/10.1249/MSS.0000000000001079

    Article  PubMed  Google Scholar 

  7. Angevaren M, Vanhees L, Wendel-Vos W, Verhaar HJ, Aufdemkampe G, Aleman A, Verschuren WM (2007) Intensity, but not duration, of physical activities is related to cognitive function. Eur J Cardiovasc Prev Rehabil 14(6), pp. 825–830, DOI: 10.1097/HJR.0b013e3282ef995b

    Article  PubMed  Google Scholar 

  8. Brown BM, Peiffer JJ, Sohrabi HR, Mondal A, Gupta VB, Rainey-Smith SR (2012) Intense physical activity is associated with cognitive performance in the elderly. Transl Psychiatry 2:e191. https://doi.org/10.1038/tp.2012.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu W, Howard VJ, Wadley VG, Hutto B, Blair SN, Vena JE, Hooker SP (2015) Association between objectively measured physical activity and cognitive function in older adults—the reasons for geographic and racial differences in stroke study. J Am Geriatr Soc 63(12):2447–2454. https://doi.org/10.1111/jgs.13829

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buchman AS, Wilson RS, Bennett DA (2008) Total daily activity is associated with cognition in older persons. Am J Geriatr Psychiatry 16(8):697–701. https://doi.org/10.1097/JGP.0b013e31817945f6

    Article  PubMed  Google Scholar 

  11. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23(5):941–955. https://doi.org/10.1016/s0197-4580(02)00028-3

    Article  PubMed  Google Scholar 

  12. Ferreira NV, Cunha PJ, da Costa DI, dos Santos F, Costa FO, Consolim-Colombo F, Irigoyen MC (2015) Association between functional performance and executive cognitive functions in an elderly population including patients with low ankle–brachial index. Clin Interv Aging 10:839. https://doi.org/10.2147/CIA.S69270

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGough EL, Kelly VE, Logsdon RG, McCurry SM, Cochrane BB, Engel JM, Teri L (2011) Associations between physical performance and executive function in older adults with mild cognitive impairment: gait speed and the timed “up & go” test. Phys Ther 91(8):1198–1207. https://doi.org/10.2522/ptj.20100372

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanders L, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen M (2019) Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS ONE 14:e0210036. https://doi.org/10.1371/journal.pone.0210036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Sherwood A (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clark LR, Schiehser DM, Weissberger GH, Salmon DP, Delis DC, Bondi MW (2012) Specific measures of executive function predict cognitive decline in older adults. J Int Neuropsychol Soc 18(1):118–127. https://doi.org/10.1017/S1355617711001524

    Article  PubMed  Google Scholar 

  17. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168. https://doi.org/10.1146/annurev-psych-113011-143750

    Article  PubMed  Google Scholar 

  18. Johnson JK, Lui LY, Yaffe K (2007) Executive function, more than global cognition, predicts functional decline and mortality in elderly women. J Gerontol A Biol Sci Med Sci 62(10):1134–1141. https://doi.org/10.1093/gerona/62.10.1134

    Article  PubMed  Google Scholar 

  19. Thibeau S, McFall GP, Wiebe SA, Anstey KJ, Dixon RA (2016) Genetic factors moderate everyday physical activity effects on executive functions in aging: evidence from the Victoria Longitudinal Study. Neuropsychology 30(1):6. https://doi.org/10.1037/neu0000217

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dorsman KA, Weiner-Light S, Staffaroni AM, Brown JA, Wolf A, Cobigo Y, Casaletto KB (2020) Get moving! Increases in physical activity are associated with increasing functional connectivity trajectories in typically aging adults. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2020.00104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boraxbekk C-J, Salami A, Wåhlin A, Nyberg L (2016) Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network—a multimodal approach. Neuroimage 131:133–141. https://doi.org/10.1016/j.neuroimage.2015.12.010

    Article  PubMed  Google Scholar 

  22. Ferreira LK, Regina ACB, Kovacevic N, Martin MDGM, Santos PP, Carneiro CDG, Busatto GF (2016) Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. Cereb Cortex 26(9):3851–3865. https://doi.org/10.1093/cercor/bhv190

    Article  PubMed  Google Scholar 

  23. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uddin LQ, Clare Kelly AM, Biswal BB, Xavier Castellanos F, Milham MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30(2):625–637. https://doi.org/10.1002/hbm.20531

    Article  PubMed  Google Scholar 

  25. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci 103(26):10046–10051

    Article  CAS  Google Scholar 

  26. Veldsman M, Churilov L, Werden E, Li Q, Cumming T, Brodtmann A (2017) Physical activity after stroke is associated with increased interhemispheric connectivity of the dorsal attention network. Neurorehabil Neural Repair 31(2):157–167. https://doi.org/10.1177/1545968316666958

    Article  PubMed  Google Scholar 

  27. Voss MW, Erickson KI, Prakash RS, Chaddock L, Malkowski E, Alves H, Kramer AF (2010) Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 48(5):1394–1406. https://doi.org/10.1016/j.neuropsychologia.2010.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Voss MW, Weng TB, Burzynska AZ, Wong CN, Cooke GE, Clark R, Kramer AF (2016) Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage 131:113–125. https://doi.org/10.1016/j.neuroimage.2015.10.044

    Article  PubMed  Google Scholar 

  29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. https://doi.org/10.1073/pnas.0504136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6), pp. 3270–3283, DOI: 10.1152/jn.90777.2008

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu JT, Wu HZ, Yan CG, Chen WX, Zhang HY, He Y, Yang HS (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 504:62–67. https://doi.org/10.1016/j.neulet.2011.08.059

    Article  CAS  PubMed  Google Scholar 

  32. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592. https://doi.org/10.1016/j.tics.2012.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  33. Franzmeier N, Buerger K, Teipel S, Stern Y, Dichgans M, Ewers M, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (2017) Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiol Aging 50:152–162. https://doi.org/10.1016/j.neurobiolaging.2016.11.013

    Article  PubMed  Google Scholar 

  34. Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010) Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28(8):1051–1057. https://doi.org/10.1016/j.mri.2010.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lifestyles N (2005) NL-1000 Activity Monitor: User’s guide & record book. New-Lifestyles Inc, Lees Summit

    Google Scholar 

  36. Ayabe M, Katamoto S, Kumahara H, Naito H, Tanaka H, Brubaker PH (2006) Validity and reliability of the simple assessment of the time spent in moderate to vigorous intensity physical activity under the controlled conditions. Med Sci Sports Exerc 38:S555. https://doi.org/10.1249/00005768-200605001-02310

    Article  Google Scholar 

  37. McClain J, Tudor-Locke C (2009) Objective monitoring of physical activity in children: considerations for instrument selection. J Sci Med Sport 12:526–533. https://doi.org/10.1016/j.jsams.2008.09.012

    Article  PubMed  Google Scholar 

  38. Peeters P, Mets T (1996) The 6-minute walk as an appropriate exercise test in elderly patients with chronic heart failure. J Gerontol A Biol Sci Med Sci 51:M147–M151. https://doi.org/10.1093/gerona/51a.4.m147

    Article  CAS  PubMed  Google Scholar 

  39. Bautmans I, Lambert M, Mets T (2004) The six-minute walk test in community dwelling elderly: influence of health status. BMC Geriatr 4:6. https://doi.org/10.1186/1471-2318-4-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mangan D, Judge J (1994) Reliability and validation of the six minute walk. J Am Geriatr Soc 42:SA73

    Google Scholar 

  41. Sperandio EF, Arantes RL, Matheus AC, Silva RP, Lauria VT, Romiti M, Dourado VZ (2015) Intensity and physiological responses to the 6-minute walk test in middle-aged and older adults: a comparison with cardiopulmonary exercise testing. Braz J Med Biol Res 48:349–353. https://doi.org/10.1590/1414-431X20144235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rikli RE, Jones CJ (1998) The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J Aging Phys Act 6(4):363–375. https://doi.org/10.1123/japa.6.4.363

    Article  Google Scholar 

  43. Huggett DL, Connelly DM, Overend TJ (2005) Maximal aerobic capacity testing of older adults: a critical review. J Gerontol Ser A 1:57–66. https://doi.org/10.1093/gerona/60.1.57

    Article  Google Scholar 

  44. Delis DC, Kramer JH, Kaplan E, Holdnack J (2004) Reliability and validity of the Delis-Kaplan executive function system: an update. J Int Neuropsychol Soc 10:301–303. https://doi.org/10.1017/S1355617704102191

    Article  PubMed  Google Scholar 

  45. Delis DC, Kaplan E, Kramer JH (2001) Delis-Kaplan executive function system (D-KEFS). The Psychological Corporation, San Antonio

    Google Scholar 

  46. Bland J, Altman D (1997) Statistics notes: Cronbach’s alpha. BMJ 314:572. https://doi.org/10.1136/bmj.314.7080.572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hinton PR, Brownlow C, McMurray I, Cozens B (2004) SPSS explained. Routledge, East Sussex

    Book  Google Scholar 

  48. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141. https://doi.org/10.1089/brain.2012.0073

    Article  PubMed  Google Scholar 

  49. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  50. Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN, Herbert MR, Bent EK, Koneru VK, Dieterich ME, Hodge SM, Rauch SL, Grant PE, Cohen BM, Seidman LJ, Caviness VS, Biederman J (2005) Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 162(7):1256–1265. https://doi.org/10.1176/appi.ajp.162.7.1256

    Article  PubMed  Google Scholar 

  51. Goldstein JM, Seidman LJ, Makris N, Ahern T, O’Brien LM, Caviness VS Jr, Kennedy DN, Faraone SV, Tsuang MT (2007) Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiat 61(8):935–945. https://doi.org/10.1016/j.biopsych.2006.06.027

    Article  CAS  PubMed  Google Scholar 

  52. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83(2–3):155–171. https://doi.org/10.1016/j.schres.2005.11.020

    Article  PubMed  Google Scholar 

  53. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliet M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  54. Cohen J, Cohen P, West SG, Aiken LS (1983) Applied multivariate regression/correlation analysis for the behavioral sciences. Psychology press, Hove

    Google Scholar 

  55. Hayes AF (2017) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford Publications, New York

    Google Scholar 

  56. Erdfelder E, Faul F, Buchner A (1996) GPOWER: a general power analysis program. Behav Res Methods Instrum Comput 28:1–11. https://doi.org/10.3758/BF03203630

    Article  Google Scholar 

  57. Centers for Disease Control (2021) How much physical activity do older adults need? Retrieved from https://www.cdc.gov/physicalactivity/basics/older_adults/index.htm

  58. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports Medicine (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  59. Kraus WE, Janz KF, Powell KE, Campbell WW, Jakicic JM, Troiano RP, 2018 Physical Activity Guidelines Advisory Committee (2019) Daily step counts for measuring physical activity exposure and its relation to health. Med Sci Sports Exerc 51(6):1206. https://doi.org/10.1249/MSS.0000000000001932

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tudor-Locke C, Craig CL, Aoyagi Y, Bell RC, Croteau KA, De Bourdeaudhuij I, Blair SN (2011) How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Act 8(1):1–19. https://doi.org/10.1186/1479-5868-8-80

    Article  Google Scholar 

  61. Steffen TM, Hacker TA, Mollinger L (2002) Age- and gender-related test performance in community-dwelling elderly people: Six-minute walk test, Berg balance scale, Timed up & Go test, and Gait speeds. Phys Ther 82(2):128–137. https://doi.org/10.1093/ptj/82.2.128

    Article  PubMed  Google Scholar 

  62. Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JD, Whitfield-Gabrieli S (2015) Resting-state anticorrelations between medial and lateral prefrontal cortex: association with working memory, aging, and individual differences. Cortex J Devoted Study Nerv Syst Behav 64:271–280. https://doi.org/10.1016/j.cortex.2014.12.001

    Article  Google Scholar 

  63. Reuter-Lorenz PA, Park DC (2014) How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev 24(3):355–370. https://doi.org/10.1007/s11065-014-9270-9

    Article  PubMed  PubMed Central  Google Scholar 

  64. Corazza DI, Sebastião É, Pedroso RV, Andreatto CAA, de Melo Coelho FG, Gobbi S, Santos-Galduróz RF (2014) Influence of chronic exercise on serum cortisol levels in older adults. Eur Rev Aging Phys Act 11(1):25–34. https://doi.org/10.1007/s11556-013-0126-8

    Article  Google Scholar 

  65. Traustadóttir T, Bosch PR, Cantu T, Matt KS (2004) Hypothalamic-pituitary-adrenal axis response and recovery from high-intensity exercise in women: effects of aging and fitness. J Clin Endocrinol Metab 89(7):3248–3254. https://doi.org/10.1210/jc.2003-031713

    Article  CAS  PubMed  Google Scholar 

  66. Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ (2021) Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. https://doi.org/10.1016/j.cmet.2021.02.017

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have no sources of funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa A. Gogniat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report. The authors have no disclosures to report.

Ethical approval

The study protocol received ethical approval by the Institutional Review Board at the University of Georgia (#STUDY00003524). Written consent is obtained from all participants. The data used in this study were anonymized before its use. We confirm that all methods were carried out in accordance with relevant guidelines and regulations.

Informed consent

Informed consent was obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogniat, M.A., Robinson, T.L., Jean, K.R. et al. Physical activity and fitness moderate the association between executive function and anti-correlated networks in the aging brain. Sport Sci Health 18, 1021–1031 (2022). https://doi.org/10.1007/s11332-021-00887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00887-9

Keywords

Navigation