Skip to main content

Advertisement

Log in

Extreme conditioning session augments brain-derived neurotrophic factor in healthy novice participants: a pilot study

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

To analyze the circulating serum levels of the brain-derived neurotrophic factor (BDNF) in novice participants submitted to an extreme conditioning training session (ECT).

Methods

Ten untrained male subjects were submitted to an ECT session, composed by the protocol "as many repetitions as possible" (WOD-AMRAP). The training session lasted 9 min, including the exercises clean, wall ball throw, and double or single-unders. At the end of the training session, Borg's perceived exertion assessment (RPE, 0–10) was assessed to demonstrate the level of physical requirement. Blood samples were collected baseline and immediately after the ECT session to measure BDNF. The Cohen's d effect size calculation was used to evaluate the magnitude of training effects on the BDNF levels. In addition, Pearson's correlation was applied between training parameters and BDNF acute delta response.

Results

The following results were found: (1) all individuals reported a similar level of effort ([RPE] 8.8 ± 0.78); (2) total training load and total volumes were 1456.4 ± 334.12 kg and 127 ± 28.2 repetitions, respectively; (3) the ratio between total load and the total volume was 11.45 ± 0.21 kg/repetition; (4) the mean BDNF response showed a significant increase (PRE 12,617 ± 2070 vs. POST 13,642 ± 1791 pg/mL, respectively) [ES = 0.49]; 5) no correlation was found between training parameters and BDNF delta acute responses.

Conclusion

Through the results found here, we concluded that a high-density/effort WOD-AMRAP ECT session is able to stimulate the acute increase in serum BDNF levels in novice participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373(3):729–741. https://doi.org/10.1007/s00441-017-2782-x

    Article  CAS  Google Scholar 

  2. Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138(1):153–156

    Article  CAS  Google Scholar 

  3. Jahangiri Z, Gholamnezhad Z, Hosseini M (2019) Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis 34(1):21–37. https://doi.org/10.1007/s11011-018-0343-y

    Article  CAS  PubMed  Google Scholar 

  4. Lapchak PA, Araujo DM, Beck KD, Finch CE, Johnson SA, Hefti F (1993) BDNF and trkB mRNA expression in the hippocampal formation of aging rats. Neurobiol Aging 14(2):121–126

    Article  CAS  Google Scholar 

  5. Matthews VB, Aström MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, Akerström T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418

    Article  CAS  Google Scholar 

  6. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069

    Article  CAS  Google Scholar 

  7. Chen SD, Wu CL, Hwang WC, Yang DI (2017) More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 18(3):E545. https://doi.org/10.3390/ijms18030545

    Article  CAS  PubMed  Google Scholar 

  8. Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M (2017) Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. J Diabetes Res 2017:2823671. https://doi.org/10.1155/2017/2823671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pius-Sadowska E, Machaliński B (2017) BDNF—a key player in cardiovascular system. J Mol Cell Cardiol 110:54–60. https://doi.org/10.1016/j.yjmcc.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  10. Lin TW, Tsai SF, Kuo YM (2018) Physical exercise enhances neuroplasticity and delays Alzheimer’s disease. Brain Plast 4(1):95–110. https://doi.org/10.3233/BPL-180073

    Article  PubMed  PubMed Central  Google Scholar 

  11. Markiewicz R, Kozioł M, Olajossy M, Masiak J (2018) Can brain-derived neurotrophic factor (BDNF) be an indicator of effective rehabilitation interventions in schizophrenia? Psychiatr Pol 52(5):819–834. https://doi.org/10.12740/PP/OnlineFirst/76040

    Article  PubMed  Google Scholar 

  12. Numakawa T, Odaka H, Adachi N (2018) Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci 19(11):E3650. https://doi.org/10.3390/ijms19113650

    Article  CAS  PubMed  Google Scholar 

  13. Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, Kunugi H (2014) The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry 5:136. https://doi.org/10.3389/fpsyt.2014.00136

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Luca C, Colangelo AM, Alberghina L, Papa M (2018) Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 12:459. https://doi.org/10.3389/fncel.2018.00459 (eCollection 2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH (2019) Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 471(3):491–505. https://doi.org/10.1007/s00424-019-02253-8

    Article  CAS  PubMed  Google Scholar 

  16. Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 96(PtA):11–18. https://doi.org/10.1016/j.neuropharm.2014.12.020 (Epub 2014 Dec 27)

    Article  CAS  PubMed  Google Scholar 

  17. Han YX, Tao C, Gao XR, Wang LL, Jiang FH, Wang C, Fang K, Chen XX, Chen Z, Ge JF (2018) BDNF-related imbalance of copine 6 and synaptic plasticity markers couples with depression-like behavior and immune activation in CUMS rats. Front Neurosci 12:731. https://doi.org/10.3389/fnins.2018.00731 (eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giudice J, Taylor JM (2017) Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 34:49–55. https://doi.org/10.1016/j.coph.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sties SW, Andreato LV, de Carvalho T, Gonzáles AI, Angarten VG, Ulbrich AZ, de Mara LS, Netto AS, da Silva EL, Andrade A (2018) Influence of exercise on oxidative stress in patients with heart failure. Heart Fail Rev 23(2):225–235. https://doi.org/10.1007/s10741-018-9686-z

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi A, Hu SL, Bostom A (2018) Physical activity in kidney transplant recipients: a review. Am J Kidney Dis 18:30069–30076. https://doi.org/10.1053/j.ajkd.2017.12.005

    Article  Google Scholar 

  21. Ahlskog JE (2018) Aerobic exercise: evidence for a direct brain effect to slow Parkinson disease progression. Mayo Clin Proc 93(3):360–372. https://doi.org/10.1016/j.mayocp.2017.12.015

    Article  PubMed  Google Scholar 

  22. McEwen SC, Siddarth P, Abedelsater B, Kim Y, Mui W, Wu P, Emerson ND, Lee J, Greenberg S, Shelton T, Kaiser S, Small GW, Merrill DA (2018) Simultaneous aerobic exercise and memory training program in older adults with subjective memory impairments. J Alzheimers Dis 62(2):795–806. https://doi.org/10.3233/JAD-170846

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edwards JP, Walsh NP, Diment PC, Roberts R (2018) Anxiety and perceived psychological stress play an important role in the immune response after exercise. Exerc Immunol Rev 24:26–34

    PubMed  Google Scholar 

  24. Morris L, Stander J, Ebrahim W, Eksteen S, Meaden OA, Ras A, Wessels A (2018) Effect of exercise versus cognitive behavioral therapy or no intervention on anxiety, depression, fitness and quality of life in adults with previous methamphetamine dependency: a systematic review. Addict Sci Clin Pract 13(1):4. https://doi.org/10.1186/s13722-018-0106-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park HS, Kim CJ, Kwak HB, No MH, Heo JW, Kim TW (2018) Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology 133:451–461. https://doi.org/10.1016/j.neuropharm.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  26. Liu PZ, Nusslock R (2018) Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 12:52. https://doi.org/10.3389/fnins.2018.00052 (eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee M, Soya H (2017) Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus. J Exerc Nutr Biochem 21(4):52–57. https://doi.org/10.20463/jenb.2017.0034

    Article  Google Scholar 

  28. Nilsson J, Ekblom Ö, Ekblom M, Lebedev A, Tarassova O, Moberg M, Lövdén M (2020) Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci Rep 10(1):4395. https://doi.org/10.1038/s41598-020-60124-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szuhanya KL, Bugattia M, Otto MW (2015) A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 60:56–64. https://doi.org/10.1016/j.jpsychires.2014.10.003

    Article  Google Scholar 

  30. Dinoff A, Herrmann N, Swardfager W, Lanctot KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor (BDNF) in healthy adults: a meta analysis. Eur J Neurosci 46(1):1635–1646. https://doi.org/10.1111/ejn.13603

    Article  PubMed  Google Scholar 

  31. Glassman G (2003) Metabolic Conditioning. CrossFit J 10:1–4. http://journal.crossfit.com/2003/06/metabolicconditioning-jun-03.tpl

  32. Glassman G (2010) Seminars training guide. CrossFit level 1 training guide. CrossFit J; May 15. http://journal.crossfit.com/2010/05/crossfit-level-1-trainingguide.tpl

  33. Feito Y, Heinrich KM, Butcher SJ, Poston WSC (2018) High-Intensity functional training (HIFT): definition and research implications for improved fitness. Sports (Basel) 6(3):E76. https://doi.org/10.3390/sports6030076

    Article  Google Scholar 

  34. Martínez-Gómez R, Valenzuela PL, Barranco-Gil D, Moral-González S, García-González A, Lucia A (2019) Full-Squat as a determinant of performance in CrossFit. Int J Sports Med 40(9):592–596. https://doi.org/10.1055/a-0960-9717

    Article  PubMed  Google Scholar 

  35. Pereira ES, Krause Neto W, Calefi AS, Georgetti M, Guerreiro L, Zocoler CAS, Gama EF (2018) Significant acute response of brain-derived neurotrophic factor following a session of extreme conditioning program is correlated with volume of specific exercise training in trained men. Front Physiol 9:823. https://doi.org/10.3389/fphys.2018.00823

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eather N, Morgan PJ, Lubans DR (2016) Improving health-related fitness in adolescents: the CrossFit Teens™ randomised controlled trial. J Sports Sci 34(3):209–223. https://doi.org/10.1080/02640414.2015.1045925

    Article  PubMed  Google Scholar 

  37. Burr JF, Beck JL, Durocher JJ (2019) The relationship of high-intensity cross-training with arterial stiffness. J Sport Health Sci 8(4):370–375. https://doi.org/10.1016/j.jshs.2017.01.009

    Article  PubMed  Google Scholar 

  38. Nieuwoudt S, Fealy CE, Foucher JA, Scelsi AR, Malin SK, Pagadala M, Rocco M, Burguera B, Kirwan JP (2017) Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes. Am J Physiol Endocrinol Metab 313(3):E314–E320. https://doi.org/10.1152/ajpendo.00407.2016

    Article  PubMed  PubMed Central  Google Scholar 

  39. Larsen RT, Hessner AL, Ishøi L, Langberg H, Christensen J (2020) Injuries in novice participants during an eight-week start up CrossFit program—a prospective cohort study. Sports 8(21):11–12. https://doi.org/10.3390/sports8020021

    Article  Google Scholar 

  40. Tibana RA, de Sousa NMF, Cunha GV, Prestes J, Fett C, Gabbett TJ, Voltarelli FA (2018) Validity of session rating perceived exertion method for quantifying internal training load during high-intensity functional training. Sports (Basel). 6(3):E68. https://doi.org/10.3390/sports6030068

    Article  PubMed  Google Scholar 

  41. Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge (ISBN 1-134-74270-3)

    Google Scholar 

  42. Sawilowsky S (2009) New effect size rules of thumb. J Mod Appl Stat Methods 8(2):467–474. http://digitalcommons.wayne.edu/jmasm/vol8/iss2/26/

  43. Church DD, Hoffman JR, Mangine GT, Jajtner AR, Townsend JR, Beyer KS, Wang R, La Monica MB, Fukuda DH, Stout JR (2016) Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol (1985) 121(1):123–128. https://doi.org/10.1152/japplphysiol.00233.2016

    Article  Google Scholar 

  44. Schiffer T, Schulte S, Sperlich B, Achtzehn S, Fricke H, Strüder HK (2011) Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci Lett 488(3):234–237. https://doi.org/10.1016/j.neulet.2010.11.035

    Article  CAS  PubMed  Google Scholar 

  45. Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on sérum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734

    Article  CAS  Google Scholar 

  46. Marston KJ, Newton MJ, Brown BM, Rainey-Smith SR, Bird S, Martins RN, Peiffer JJ (2017) Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J Sci Med Sport 20(10):899–903. https://doi.org/10.1016/j.jsams.2017.03.015

    Article  PubMed  Google Scholar 

  47. Mackay CP, Kuys SS, Brauer SG (2017) The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast. https://doi.org/10.1155/2017/4716197

    Article  PubMed  PubMed Central  Google Scholar 

  48. Parrini M, Ghezzi D, Deidda G, Medrihan L, Castroflorio E, Alberti M, Baldelli P, Cancedda L, Contestabile A (2017) Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Sci Rep 7(1):16825. https://doi.org/10.1038/s41598-017-17201-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J (2015) Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol 66(6):811–821

    CAS  PubMed  Google Scholar 

  50. Sakr HF, Abbas AM, El Samanoudy A (2015) Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats. J Physiol Pharmacol 66:191–202

    CAS  PubMed  Google Scholar 

  51. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, Mendonça VA, Lacerda AC, Massensini AR, Poortamns JR, Meeusen R, Leite HR (2018) High-intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 184:6–11. https://doi.org/10.1016/j.physbeh.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  52. Chen MJ, Russo-Neustadt AA (2007) Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci 81:280–290

    Article  Google Scholar 

  53. Counts S, Mufson EJ (2010) Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem 113:649–660

    Article  CAS  Google Scholar 

  54. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18(5):649–659. https://doi.org/10.1016/j.cmet.2013.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu B (2013) BDNF (I)rising from exercise. Cell Metab 18(5):612–614. https://doi.org/10.1016/j.cmet.2013.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029

    Article  CAS  PubMed  Google Scholar 

  57. Tharmaratnam T, Tabobondung T, Tabobondung T, Doherty S (2018) Synergistic effects of brain-derived neurotrophic factor (BDNF) and exercise intensity on memory in the adolescent brain: a commentary. Environ Health Prev Med 23(1):12. https://doi.org/10.1186/s12199-018-0701-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Etnier JL, Wideman L, Labban JD, Piepmeier AT, Pendleton DM, Dvorak KK, Becofsky K (2016) The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). J Sports Exerc Psychol 38(4):331–340. https://doi.org/10.1123/jsep.2015-0335

    Article  Google Scholar 

  59. Pietrelli A, Matkovic L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A (2018) Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 18:30120–30125. https://doi.org/10.1016/j.nlm.2018.05.007

    Article  CAS  Google Scholar 

  60. Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, Kivipelto M, Winblad B, Granholm AC, Mohammed AK (2017) BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: associations with working memory function. J Alzheimers Dis 55(2):645–657

    Article  Google Scholar 

  61. Hopkins ME, Bucci DJ (2010) BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem 94(2):278–284. https://doi.org/10.1016/j.nlm.2010.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hopkins ME, Nitecki R, Bucci DJ (2011) Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience 194:84–94. https://doi.org/10.1016/j.neuroscience.2011.07.071

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

EP is the lead author of this manuscript, contributing all its steps, including volunteer training. WKN assisted in the stages of project preparation, statistics, data analysis, and final data preparation. AC collected the data and blood and analyzed the BDNF. MG, LG, and CZ assisted in the assembly of the training protocol, data collection during the volunteers' training, and the final version of the manuscript. EG guided the entire process and was present at all stages.

Corresponding author

Correspondence to Walter Krause Neto.

Ethics declarations

Conflict of interest

All authors disclose any conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were approved by the ethical standards of the institutional or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards (protocol 37330614.7.0000.0089).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.S., Neto, W.K., Calefi, A.S. et al. Extreme conditioning session augments brain-derived neurotrophic factor in healthy novice participants: a pilot study. Sport Sci Health 18, 537–544 (2022). https://doi.org/10.1007/s11332-021-00840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00840-w

Keywords

Navigation