Skip to main content

Advertisement

Log in

Strength training and growth hormone: effects on bone of Wistar rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Introduction

The use of growth hormone (GH) in several sports has also been observed, becoming a problem for antidoping control agencies in the high-performance sports environment. In addition, the use of this substance may pose a risk, expose users to potential health problems and bone alterations.

Objective

The objective of the present study was to verify the effects of muscular strength training and application of a GH protocol on mineral density, bone strength, and trabecular tissue.

Methods

40 Wistar rats, 60 days old, were used. The animals were divided into four groups: control (C), control and application of GH (GHC), muscular strength training (T), and muscular strength training with the application of GH (GHT). Animals of the GHC and GHT groups received administration of 0.2 IU/kg of GH prior to perform the T protocol. The animals of the T and GHT groups performed four series of 10 jumps, 3×/week, for 4/weeks. The values of bone mineral density (BMD), bone strength (F-max), and Micro Computed Tomography (MCT) were obtained.

Results

An increase in the BMD variable was observed in all experimental groups (C = 0.110 ± 0.005; GHC = 0.134 ± 0.05; T = 0.127 ± 0.004; GHT = 0.133 ± 0.008 g/cm2) (C vs GHT p < 0.05). No statistical difference was observed for the F-max variable. For MCT, all experimental groups presented an increase in the number of trabeculae (Tb.N) (C = 1.10 ± 0.22; GHC = 1.79 ± 0.07; T = 1.91 ± 0.04; GHT = 1.91 ± 0.09) (p < 0.05).

Conclusion

It was concluded that both GH and T were able to promote increases in BMD and Tb.N; however, no significant difference was observed for the F-max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li CH, Papkoff H (1956) Preparation and properties of growth hormone from human and monkey pituitary glands. Science 124:1293–1294. https://doi.org/10.1126/science.124.3235.1293

    Article  CAS  PubMed  Google Scholar 

  2. Ehrnborg C, Rosén T (2008) Physiological and pharmacological basis for the ergogenic effects of growth hormone in elite sports. Asian J Androl 10:373–383. https://doi.org/10.1111/j.1745-7262.2008.00403.x

    Article  CAS  PubMed  Google Scholar 

  3. Li CH, Dixon JS (1971) Human pituitary growth hormone. 32. The primary structure of the hormone: revision. Arch Biochem Biophys 146:233–236

    Article  CAS  Google Scholar 

  4. Ariyasu D, Kubo E, Higa D et al (2019) Decreased activity of the Ghrhr and Gh promoters causes dominantly inherited GH deficiency in humanized GH1 mouse models. Endocrinology 160:2673–2691. https://doi.org/10.1210/en.2019-00306

    Article  CAS  PubMed  Google Scholar 

  5. Butkus JA, Brogan RS, Giustina A et al (1995) Changes in the growth hormone axis due to exercise training in male and female rats: secretory and molecular responses. Endocrinology 136:2664–2670. https://doi.org/10.1210/endo.136.6.7750490

    Article  CAS  PubMed  Google Scholar 

  6. Giustina A (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797. https://doi.org/10.1210/er.19.6.717

    Article  CAS  PubMed  Google Scholar 

  7. Gough L, Castell LM, Gatti R, Godfrey RJ (2016) Growth hormone concentrations in different body fluids before and after moderate exercise. Sport Med Open 2:30. https://doi.org/10.1186/s40798-016-0054-z

    Article  Google Scholar 

  8. HALL SJ (2000) Biomecânica básica. Grupo Gen-Guanabara Koogan

  9. Ozaki GAT, Koike TE, Castoldi RC et al (2014) Physical exercise remobilization effects on bone density in adults and elderly rats. Motricidade 10:71–78. https://doi.org/10.6063/motricidade.10(3).2725

    Article  Google Scholar 

  10. Fink J, Schoenfeld BJ, Nakazato K (2018) The role of hormones in muscle hypertrophy. Phys Sportsmed 46:129–134. https://doi.org/10.1080/00913847.2018.1406778

    Article  PubMed  Google Scholar 

  11. Siebert DM, Rao AL (2018) The use and abuse of human growth hormone in sports. Sport Heal A Multidiscip Approach 10:419–426. https://doi.org/10.1177/1941738118782688

    Article  Google Scholar 

  12. Cruzat VF, Donato Júnior J, Tirapegui J, Schneider CD (2008) Growth hormone and physical exercise: current considerations. Braz J Pharm Sci 44:549–562. https://doi.org/10.1590/S1516-93322008000400003

    Article  CAS  Google Scholar 

  13. Barroso O, Mazzoni I, Rabin O (2008) Hormone abuse in sports: the antidoping perspective. Asian J Androl 10:391–402. https://doi.org/10.1111/j.1745-7262.2008.00402.x

    Article  CAS  PubMed  Google Scholar 

  14. Marchand A, Martin J, Collot D et al (2019) Combined administration of microdoses of growth hormone and erythropoietin: effects on performance and evaluation of GH detection capability using anti-doping methods. Drug Test Anal 11:1698–1713. https://doi.org/10.1002/dta.2674

    Article  CAS  PubMed  Google Scholar 

  15. Díez JJ, Sangiao-Alvarellos S, Cordido F (2018) Treatment with growth hormone for adults with growth hormone deficiency syndrome: benefits and risks. Int J Mol Sci 19:893. https://doi.org/10.3390/ijms19030893

    Article  CAS  PubMed Central  Google Scholar 

  16. Appelman-Dijkstra NM, Claessen KMJA, Roelfsema F et al (2013) Therapy of Endocrine disease: Long-term effects of recombinant human GH replacement in adults with GH deficiency: a systematic review. Eur J Endocrinol 169:R1–R14. https://doi.org/10.1530/EJE-12-1088

    Article  CAS  PubMed  Google Scholar 

  17. Holmer H, Svensson J, Rylander L et al (2007) Fracture incidence in GH-deficient patients on complete hormone replacement including GH. J Bone Miner Res 22:1842–1850. https://doi.org/10.1359/jbmr.070811

    Article  PubMed  Google Scholar 

  18. Castoldi RC, Camargo RCT, Magalhães AJB et al (2013) Concurrent training effect on muscle fibers in Wistar rats. Motriz Rev Educ Fis 19:717–723

    Article  Google Scholar 

  19. Longui CA (2008) GH treatment in patients with idiopathic short stature. Arq Bras Endocrinol Metabol 52:750–756. https://doi.org/10.1590/S0004-27302008000500006

    Article  PubMed  Google Scholar 

  20. Tinggaard J, Jensen RB, Sundberg K et al (2014) Ovarian morphology and function during growth hormone therapy of short girls born small for gestational age. Fertil Steril 102:1733–1741. https://doi.org/10.1016/j.fertnstert.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Kaminsky P, Walker PM, Deibener J et al (2012) Growth hormone potentiates thyroid hormone effects on post-exercise phosphocreatine recovery in skeletal muscle. Growth Horm IGF Res 22:240–244. https://doi.org/10.1016/j.ghir.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  22. De Mello Malheiro OC, Giacomini CT, Justulin LA et al (2009) Calcaneal tendon regions exhibit different MMP-2 activation after vertical jumping and treadmill running. Anat Rec (Hoboken) 292:1656–1662. https://doi.org/10.1002/ar.20953

    Article  CAS  Google Scholar 

  23. Castoldi RC, Teixeira GR, de Malheiro OCM et al (2015) Effects of 14 weeks resistance training on muscle tissue in Wistar rats. Int J Morphol 33:446–451. https://doi.org/10.4067/S0717-95022015000200007

    Article  Google Scholar 

  24. Peres-Ueno MJ, Stringhetta-Garcia CT, Castoldi RC et al (2017) Model of hindlimb unloading in adult female rats: characterizing bone physicochemical, microstructural, and biomechanical properties. PLoS ONE 12:e0189121. https://doi.org/10.1371/journal.pone.0189121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elias E, De CV, Abdalla DR et al (2012) Mecânicas da tíbia de ratos após a imobilização gessada. Rev EPeQ/Fafibe on-line 4:63–69

    Google Scholar 

  26. Aguiar AF, Agati LB, Müller SS et al (2010) Effects of high-impact exercise training on bone mechanical proprieties—an experimental study in female Wistar rats. Acta Ortopédica Bras 18:245–249. https://doi.org/10.1590/S1413-78522010000500002

    Article  Google Scholar 

  27. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  28. Ghiasi R, Mohammadi M, Ashrafi Helan J et al (2015) Influence of two various durations of resistance exercise on oxidative stress in the male rat’s hearts. J Cardiovasc Thorac Res 7:149–153. https://doi.org/10.15171/jcvtr.2015.32

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brancaccio P, Maffulli N, Politano L et al (2011) Persistent HyperCKemia in athletes. Muscles Ligaments Tendons J 1:31–35

    PubMed  PubMed Central  Google Scholar 

  30. Nie J, Tong TK, George K et al (2011) Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scand J Med Sci Sports 21:625–629. https://doi.org/10.1111/j.1600-0838.2010.01096.x

    Article  CAS  PubMed  Google Scholar 

  31. Yin X, Cui S, Li X et al (2020) Regulation of circulatory muscle-specific MicroRNA during 8 km Run. Int J Sports Med 41:582–588. https://doi.org/10.1055/a-1145-3595

    Article  PubMed  Google Scholar 

  32. Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61:1305–1316. https://doi.org/10.1016/j.matchar.2010.09.012

    Article  CAS  Google Scholar 

  33. Argenta MA, Buriol TM, Hecke MB (2010) Metodologia para a obtenção de parâmetros físicos e geométricos do osso trabecular função de imagens de micro tomografia. Mecánica Comput 29:6363–6381

    Google Scholar 

  34. Joo YI, Sone T, Fukunaga M et al (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33:485–493. https://doi.org/10.1016/S8756-3282(03)00212-6

    Article  PubMed  Google Scholar 

  35. Wallace IJ, Judex S, Demes B (2015) Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice. Bone 72:1–8. https://doi.org/10.1016/j.bone.2014.11.013

    Article  PubMed  Google Scholar 

  36. Smitka K, Nedvidkova J, Vondra K et al (2019) Acipimox administration with exercise induces a co-feedback action of the GH, PP, and PYY on ghrelin associated with a reduction of peripheral lipolysis in bulimic and healthy-weight czech women: a randomized study. Front Endocrinol (Lausanne) 10:1–16. https://doi.org/10.3389/fendo.2019.00108

    Article  Google Scholar 

  37. Allen DB, Backeljauw P, Bidlingmaier M et al (2016) GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur J Endocrinol 174:P1–P9. https://doi.org/10.1530/EJE-15-0873

    Article  CAS  PubMed  Google Scholar 

  38. Bergan-Roller HE, Sheridan MA (2018) The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol 258:119–133. https://doi.org/10.1016/j.ygcen.2017.07.028

    Article  CAS  PubMed  Google Scholar 

  39. Castoldi RC, Louzada MJQ, de Oliveira BRSM et al (2017) Effects of aerobic, anaerobic, and concurrent training on bone mineral density of rats. Mot Rev Educ Fis 23:71–75. https://doi.org/10.1590/s1980-6574201700010011

    Article  Google Scholar 

  40. Ryan AS, Treuth MS, Rubin MA et al (1994) Effects of strength training on bone mineral density: hormonal and bone turnover relationships. J Appl Physiol 77:1678–1684

    Article  CAS  Google Scholar 

  41. Jorgensen JOL, Vahl N, Hansen TB et al (1996) Growth hormone versus placebo treatment for one year in growth hormone deficient adults: increase in exercise capacity and normalization of body composition. Clin Endocrinol (Oxf) 45:681–688. https://doi.org/10.1046/j.1365-2265.1996.8720883.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian Agency of Resources for Higher Education Personnel (CAPES) (Grant no. CAPES, 01-P-3369-2017) for supporting the development of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Chacon Castoldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study was approved by the local ethics committee, under approval number (CEUA-2626).

Human and animal rights

All procedures performed in studies involving animals were in accordance with ethical standards of the institutional and/or national research committee and with the Ethics Commission on Animal Use (CEUA- protocol number 2626/Brazil).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castoldi, R.C., Giometti, I.C., Ozaki, G.A.T. et al. Strength training and growth hormone: effects on bone of Wistar rats. Sport Sci Health 18, 137–145 (2022). https://doi.org/10.1007/s11332-021-00784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00784-1

Keywords

Navigation