Association between total and regional body fat to bone parameters of university athletes


The purpose of this study was to investigate the association between total and regional body fat to BMD and BMC among university athletes. Cross-sectional study with 167 university athletes (18–35 years). BMD, BMC, body fat total and android, gynoid, arms and legs, and lean tissue mass were obtained using dual X-ray absorptiometry. In male athletes, BMC presented a direct association with total body fat (β = 0.134, CI  0.606, 2.092), android (β = 1.065, CI = 0.394, 1.735), gynoid (β = 0.059, CI 26, 0.092), arms (β = 1.259, CI = 0.531, 1.988), and legs (β = 0.041, CI 0.017, 0.564). In female athletes, there was a direct association between BMC and total fat (β = 1708, CI 0.585, 2.831), android (β = 1.315, CI 0.488, 2.151), gynoid (β = 0.069, CI 0.026, 0.112), arms (β = 0.996, CI 0.022, 1.971), and legs (β = 0.031, CI 0.004, 0.059). Concluded BMD had no association with total and regional body fat in athletes of both genders. It is concluded that total and regional body fat contributed directly to BMC, but not to BMD in athletes.

This is a preview of subscription content, log in to check access.


  1. 1.

    Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kim JH, Choi HJ, Ku EJ, Hong AR, Kim KM, Kim SW, Shin CS (2016) Regional body fat depots differently affect bone microarchitecture in postmenopausal Korean women. Osteoporos Int 27:1161–1168.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:131–139.

    CAS  Article  Google Scholar 

  4. 4.

    American Bone Health. Glossary – American Bone Health. Disponível em: Acesso em: 27 agosto. 2020

  5. 5.

    Bazzocchi A et al (2016) DXA: technical aspects and application. Eur J Radiol 85(8):1481–1492

    Article  Google Scholar 

  6. 6.

    Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA (2010) Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch Gerontol Geriatr 51:295–298.

    Article  PubMed  Google Scholar 

  7. 7.

    Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Lee VR, Varadi TC, Going SB (2018) Effect of cardiometabolic risk factors on the relationship between adiposity and bone mass in girls. Int J Obes 42:1185–1194.

    Article  Google Scholar 

  8. 8.

    Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De Bacquer D, Zmierczak H, Kaufman JM (2009) Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab 94:2325–2331.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    López-Gómez JJ, Castrillón J (2016) Pérez; de luis román, Daniel a. impact of obesity on bone metabolism. Endocrinol Nutr (English Edition) 63:551–559

    Article  Google Scholar 

  10. 10.

    Scott D et al (2016) Associations of sarcopenic obesity and dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int 99:30–42

    CAS  Article  Google Scholar 

  11. 11.

    Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12:235–242.

    Article  Google Scholar 

  12. 12.

    Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94:3387–3393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Singhal V, Maffazioli GDN, Cano Sokoloff N, Ackerman KE, Lee H, Gupta N, Misra M (2015) Regional fat depots and their relationship to bone density and microarchitecture in young oligo-amenorrheic athletes. Bone 77:83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rosen CJ, Bouxsein ML (2016) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Rev Rheumatol 2:35.

    CAS  Article  Google Scholar 

  15. 15.

    Ackland TR, Lohman TG, Sundgot-Borgen J, Maughan RJ, Meyer NL, Stewart AD, Müller W (2012) Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med 42:227–249.

    Article  PubMed  Google Scholar 

  16. 16.

    Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A (2011) Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc 33:507–511.

    Article  Google Scholar 

  17. 17.

    McArdle WD, Katch FI, Katch VL (1991) Exercise physiology. Med Sci Sports Exerc 23:1403

    Article  Google Scholar 

  18. 18.

    Sarkis KS, de Medeiros PM, Szejnfeld VL, Martini LA (2012) High bone density and bone health. Endocrinol Nutr (Engl Ed) 59:207–214.

    Article  Google Scholar 

  19. 19.

    Naganathan V, Sambrook P (2003) Gender differences in volumetric bone density: a study of opposite-sex twins. Osteoporos Int 14:564–569

    Article  Google Scholar 

  20. 20.

    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  21. 21.

    Ge Healthcare (2006) World Osteoporosis Congress of the International Osteoporosis Foundation, Toronto, Canada, June. GE Medical Systems Lunar, Madison

    Google Scholar 

  22. 22.

    Nevill AM, Holder RL, Maffulli N, Cheng JC, Leung SS, Lee WT, Lau JT (2002) Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective. J Bone Miner Res 17:703–708.

    Article  PubMed  Google Scholar 

  23. 23.

    Kosar SN (2016) Associations of lean and fat mass measures with whole body bone mineral content and bone mineral density in female adolescent weightlifters and swimmers. Turk J Pediatr 58:79–85.

    Article  PubMed  Google Scholar 

  24. 24.

    Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Sheu Y, Cauley JA (2011) The role of bone marrow and visceral fat on bone metabolism. Curr Osteoporos Rep 9:67–75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mazić S, Lazović B, DJelić M, Suzić-Lazić J, Aćimović T, Brkić P (2004) Body composition assessment in athletes: a systematic review. Med Pregl 67:255–260.

    Article  Google Scholar 

  27. 27.

    Kameda T, Mano H, Yuasa T (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186:489–495.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Freitas PMSS, Rosa MG, Gomes AM, Wahrlich V, Di Luca DG, da Cruz Filho RA, Yokoo EM (2016) Central and peripheral fat body mass have a protective effect on osteopenia or osteoporosis in adults and elderly? Osteoporos Int 27:1659–1663.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zillikens MC, Uitterlinden AG, van Leeuwen JP, Berends AL, Henneman P, van Dijk KW, Rivadeneira F (2010) The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcif Tissue Int 86:116–125.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Taaffe DR, Marcus R (1999) Regional and total body bone mineral density in elite collegiate male swimmers. J Sports Med Phys Fitness 39:154–159

    CAS  PubMed  Google Scholar 

  31. 31.

    Trexler ET, Smith-Ryan AE, Mann JB, Ivey PA, Hirsch KR, Mock MG (2017) Longitudinal body composition changes in NCAA Division I college football players. J Strength Cond Res 31:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Khan K, McKay H, Kannus P, Wark J, Bailey D, Bennell K (2001). Physical activity and bone health. Human Kinetics, USA, pp 87–97

  33. 33.

    Nana A, Slater GJ, Stewart AD, Burke LM (2015) Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab 25:198–215.

    Article  PubMed  Google Scholar 

  34. 34.

    Lukaski HC (2009) Evaluation of body composition: why and how? Mediterr J Nutr Metab 2:1–10.

    Article  Google Scholar 

  35. 35.

    Tavoian D et al (2019) Changes in DXA-derived lean mass and MRI-derived cross-sectional area of the thigh are modestly associated. Sci Rep 9:1–9

    CAS  Article  Google Scholar 

Download references


The study was prepared by PCM, TRL, MSM, and DASS, and data were collected and analyzed by PCM, TRL, and MSM; the interpretation of the data and the preparation of the manuscript were performed by PCM, TRL, and MSM. All authors have approved the final version of the article.



Author information



Corresponding author

Correspondence to Priscila Custódio Martins.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martins, P.C., de Lima, T.R., Moraes, M.S. et al. Association between total and regional body fat to bone parameters of university athletes. Sport Sci Health (2020).

Download citation


  • Bone remodeling
  • Body composition
  • Subcutaneous fat
  • Sports
  • Student health