Skip to main content
Log in

Plasma oxidative stress (hydrogen peroxide/trolox) responses during a 7-day road cycling stage race and a competitive football match in top-level athletes

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the response induced by regular competition on free oxygen radicals (hydrogen peroxide), free oxygen radical defence (Trolox) and hydrogen peroxide/Trolox balance in plasma, between top-level male road cyclists and top-level male football players.

Methods

9 male top-level road cyclists (age 27.2 ± 3.5 years) and 10 male top-level football players (age 27.3 ± 4.3 years) completed a 7-day road cycling stage race and a football match, respectively. Free oxygen radicals (hydrogen peroxide) and free oxygen radical defence (Trolox) were measured 2 h before and 1 h after the corresponding competition. Body composition was determined previously by means of dual-energy X-ray absorptiometry.

Results

Both competitions induced a significant increase in hydrogen peroxide for each group. Trolox decreased and hydrogen peroxide/Trolox balance increased, significantly, for road cyclists. For football players, Trolox increased and hydrogen peroxide/Trolox balance decreased, significantly. Hydrogen peroxide/Trolox balance differences had a significant positive correlation against respective competitive loads for both groups. Hydrogen peroxide differences showed a significant negative correlation and Trolox differences indicated a significant positive correlation with body mass index, body fat, and lean body mass.

Conclusions

This study suggests that football players may be able to maintain oxidative stress balance in plasma after a football match whilst road cyclists may experience a hyper-oxidative stress state in plasma after a 7-day road cycling stage race. In addition, both, competitive load and body mass are related to the oxidative stress balance in plasma in these two groups of top-level athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABTS•+ :

2,2′-Azinobis(3-ethylbenzothiazoline-6-sulphonic acid)

AOPP:

Advanced oxidation protein products

BF:

Body fat

BM:

Body mass

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

CAT:

Catalase

DXA:

Dual-energy X-ray absorptiometry

EAC:

Enzymatic antioxidant capacity

FeCl3 :

Iron(III) chloride

FORD:

Free oxygen radical defence

FORT:

Free oxygen radicals

FP:

Top-level outfield
football players (Spanish La Liga Team)

GOX :

Glucose oxidase

GPx:

Glutathione peroxidase

GPx-1:

Glutathione peroxidase-1

GPx-2:

Glutathione peroxidase-2

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulphide

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

LBM:

Lean body mass

MDA:

Malondialdhehyde

MPO:

Myeloperoxidase

NEAC:

Non-enzymatic antioxidant capacity

•O:

Singlet oxygen

O2 :

Superoxide anion

•OH:

Hydroxyl radical

ONOO :

Peroxynitrite

OS:

Oxidative stress

PCD:

Protein carbonyl derivatives

RC:

Top-level road cyclists (UCI World Tour Team)

REDOX:

Reduction/oxidation

RONS:

Reactive oxygen and nitrogen species

RO•:

Alkoxy

ROMs:

Reactive oxygen metabolites

ROO•:

Peroxy

ROOH:

Hydroperoxides

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAC:

Total antioxidant capacity

TEAC:

Trolox equivalent antioxidant capacity

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

XO:

Xanthine oxidase

2CrNH2 :

Phenylenediamine derivative

4-HNE:

4-Hydroxyalkenals

8-OHdG:

8-Hydroxydeoxyguanosine

References

  1. Jackson MJ, Edwards RH, Symons MC (1985) Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta 847:185–190. https://doi.org/10.1016/0167-4889(85)90019-9

    Article  CAS  Google Scholar 

  2. Tryfidou DV, McClean C, Nikolaidis MG, Davison GW (2020) DNA Damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med 50:103–127. https://doi.org/10.1007/s40279-019-01181-y

    Article  Google Scholar 

  3. Mason SA, Morrison D, McConell GK, Wadley GD (2016) Muscle redox signalling pathways in exercise. Role of antioxidants. Free Radic Biol Med 98:29–45. https://doi.org/10.1016/j.freeradbiomed.2016.02.022

    Article  CAS  Google Scholar 

  4. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. https://doi.org/10.1152/physrev.00031.2007

    Article  CAS  Google Scholar 

  5. Slattery K, Bentley D, Coutts AJ (2015) The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med 45:453–471. https://doi.org/10.1007/s40279-014-0282-7

    Article  Google Scholar 

  6. Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21:91–97. https://doi.org/10.1191/0960327102ht217oa

    Article  CAS  Google Scholar 

  7. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31:916–922. https://doi.org/10.1016/j.nut.2015.02.005

    Article  CAS  Google Scholar 

  8. de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simoes HG (2017) The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med 47:277–293. https://doi.org/10.1007/s40279-016-0566-1

    Article  Google Scholar 

  9. Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, Mitrakou A, Mastorakos G, Papassotiriou I, Taxildaris K, Kouretas D (2007) Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med 43:901–910. https://doi.org/10.1016/j.freeradbiomed.2007.05.022

    Article  CAS  Google Scholar 

  10. Balakrishnan SD (1998) Anuradha CV (1998) Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 16(4):269–275. https://doi.org/10.1002/(SICI)1099-0844(1998120)16:4%3c269:AID-CBF797%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  11. Braakhuis AJ, Hopkins WG (2015) Impact of dietary antioxidants on sport performance: a review. Sports Med 45:939–955. https://doi.org/10.1007/s40279-015-0323-x

    Article  Google Scholar 

  12. Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165:638–647. https://doi.org/10.1016/j.chemphyslip.2012.05.003

    Article  CAS  Google Scholar 

  13. Finkler M, Lichtenberg D, Pinchuk I (2014) The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol 25:1–11. https://doi.org/10.1515/jbcpp-2013-0082

    Article  CAS  Google Scholar 

  14. Jackson NJ (2008) Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radic Biol Med 44:132–141. https://doi.org/10.1016/j.freeradbiomed.2007.06.003

    Article  CAS  Google Scholar 

  15. Koppenol WH (2001) The Haber-Weiss cycle–70 years later. Redox Rep 6:229–234. https://doi.org/10.1179/135100001101536373

    Article  CAS  Google Scholar 

  16. Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270. https://doi.org/10.1089/ars.2006.8.243

    Article  CAS  Google Scholar 

  17. Abramson JL, Hooper WC, Jones DP, Ashfaq S, Rhodes SD, Weintraub WS, Harrison DG, Quyyumi AA, Vaccarino V (2005) Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis 178:115–121. https://doi.org/10.1016/j.atherosclerosis.2004.08.007

    Article  CAS  Google Scholar 

  18. Macciò A, Madeddu C, Massa D, Mudu MC, Lusso MR, Gramignano G, Serpe R, Melis GB, Mantovani G (2005) Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. Blood 106:362–367. https://doi.org/10.1182/blood-2005-01-0160

    Article  CAS  Google Scholar 

  19. Gramignano G, Lusso MR, Madeddu C, Massa E, Serpe R, Deiana L, Lamonica G, Dessì M, Spiga C, Astara G, Macciò A, Mantovani G (2006) Efficacy of l-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy. Nutrition 22:136–145. https://doi.org/10.1016/j.nut.2005.06.003

    Article  CAS  Google Scholar 

  20. Harris MT, Davis WW, Le NA, Eggleston B, Austin GE, Moussa M, Brown WV (2007) Free oxygen radicals in whole blood correlate strongly with high-sensitivity C-reactive protein. J Clin Lipidol 1:593–598. https://doi.org/10.1016/j.jacl.2007.10.008

    Article  Google Scholar 

  21. Garelnabi MO, Brown WV, Le NA (2008) Evaluation of a novel colorimetric assay for free oxygen radicals as marker of oxidative stress. Clin Biochem 41:1250–1254. https://doi.org/10.1016/j.clinbiochem.2008.07.00

    Article  CAS  Google Scholar 

  22. Pavlatou MG, Papastamataki M, Apostolakou F, Papassotiriou I, Tentolouris N (2009) FORT and FORD: two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism 58:1657–1662. https://doi.org/10.1016/j.metabol.2009.05.022

    Article  CAS  Google Scholar 

  23. Gizi A, Papassotiriou I, Apostolakou F, Lazaropoulou C, Papastamataki M, Kanavaki I, Kalotychou V, Goussetis E, Kattamis A, Rombos I, Kanavakis E (2011) Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis 46:220–225. https://doi.org/10.1016/j.bcmd.2011.01.002

    Article  CAS  Google Scholar 

  24. Ghani MA, Barril C, Bedgood DR, Prenzler PD (2017) Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem 230:195–207. https://doi.org/10.1016/j.foodchem.2017.02.127

    Article  CAS  Google Scholar 

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  26. Boligon AA, Machado MM, Athayde ML (2014) Technical evaluation of antioxidant activity. Med Chem 4:517–522. https://doi.org/10.4172/2161-0444.1000188

    Article  CAS  Google Scholar 

  27. Serrano E, Venegas C, Escames G, Sánchez-Muñoz C, Zabala M, Puertas A, de Haro T, Gutierrez A, Castillo M, Acuna-Castroviejo D (2010) Antioxidant defence and inflammatory response in professional road cyclists during a 4-day competition. J Sports Sci 28:1047–1056. https://doi.org/10.1080/02640414.2010.484067

    Article  Google Scholar 

  28. Tauler P, Aguiló A, Cases N, Sureda A, Gimenez F, Villa G, Córdova A, Biescas AP (2002) Acute phase immune response to exercise coexists with decreased neutrophil antioxidant enzyme defences. Free Radic Res 36:1101–1107. https://doi.org/10.1080/1071576021000028334

    Article  CAS  Google Scholar 

  29. Aguiló A, Tauler P, Fuentespina E, Tur JA, Córdova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7. https://doi.org/10.1016/j.physbeh.2004.07.034

    Article  CAS  Google Scholar 

  30. Sureda A, Tauler P, Aguiló A, Cases N, Fuentespina E, Córdova A, Tur JA, Pons A (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324. https://doi.org/10.1080/10715760500177500

    Article  CAS  Google Scholar 

  31. Cases N, Sureda A, Maestre I, Tauler P, Aguiló A, Córdova A, Roche E, Tur JA, Pons A (2006) Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes. Eur J Appl Physiol 98:263–269. https://doi.org/10.1007/s00421-006-0273-y

    Article  CAS  Google Scholar 

  32. Tauler P, Sureda A, Cases N, Aguiló A, Rodríguez-Marroyo JA, Villa G, Tur JA, Pons A (2006) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem 17:665–671. https://doi.org/10.1016/j.jnutbio.2005.10.013

    Article  CAS  Google Scholar 

  33. Sureda A, Ferrer MD, Tauler P, Maestre I, Aguiló A, Córdova A, Tur JA, Roche E, Pons A (2007) Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radic Res 41:874–883. https://doi.org/10.1080/10715760701416459

    Article  CAS  Google Scholar 

  34. Degens H, Stasiulis A, Skurvydas A, Statkeviciene B, Venckunas T (2019) Physiological comparison between non-athletes, endurance, power and team athletes. Eur J Appl Physiol 119:1377–1386. https://doi.org/10.1007/s00421-019-04128-3

    Article  Google Scholar 

  35. Michalik K, Woźniak A, Wierzbicka-Damska I (2017) The influence of aerobic performance on HRR in road cyclists and footballers. J Ed Health Sport 7:77–89. https://doi.org/10.5281/zenodo.376348

    Article  Google Scholar 

  36. Zorzoli M, Pipe A, Garnier PY, Vouillamoz M, Dvorak J (2014) Practical experience with the implementation of an athlete’s biological profile in athletics, cycling, football and swimming. Br J Sports Med 48:862–866. https://doi.org/10.1136/bjsports-2014-093567

    Article  CAS  Google Scholar 

  37. Kreher JB, Schwartz JB (2012) Overtraining syndrome: a practical guide. Sports Health 4:128–138. https://doi.org/10.1177/1941738111434406

    Article  Google Scholar 

  38. Kelepouris E, Agus ZS (1998) Hypomagnesemia: renal magnesium handling. Semin Nephrol 18:58–73

    CAS  Google Scholar 

  39. Jimenez CC, Corcoran MH, Crawley JT, Guyton Hornsby W, Peer KS, Philbin RD, Riddell MC (2007) National athletic trainers’ association position statement: management of the athlete with type 1 diabetes mellitus. J Athl Train 42:536–545

    Google Scholar 

  40. Mayerhöfer TG, Mutschke H, Popp J (2016) Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law. Chem Phys Chem 17:1948–1955. https://doi.org/10.1002/cphc.201600114

    Article  CAS  Google Scholar 

  41. Palmieri B, Sblendorio V (2010) Current status of measuring oxidative stress. Methods Mol Biol 594:3–17. https://doi.org/10.1007/978-1-60761-411-1_1

    Article  CAS  Google Scholar 

  42. Sblendorio V, Cannoletta M, Palmieri B, Cagnacci A (2007) Menopause and oxidative stress: effect of methyltetrahydrofolate supplementation. World Conference of Stress. 23–26 August, Budapest, Hungary.

  43. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631. https://doi.org/10.1098/rstb.1985.0168

    Article  CAS  Google Scholar 

  44. Knez WL, Jenkins DG, Coombes JS (2007) Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc 39:283–288. https://doi.org/10.1249/01.mss.0000246999.09718.0c

    Article  CAS  Google Scholar 

  45. Knez WL, Jenkins DG, Coombes JS (2014) The effect of an increased training volume on oxidative stress. Int J Sports Med 35:8–13. https://doi.org/10.1055/s-0033-1333746

    Article  CAS  Google Scholar 

  46. Finaud J, Scislowski V, Lac G, Durand D, Vidalin H, Robert A, Filaire E (2006) Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med 27:87–93. https://doi.org/10.1055/s-2005-837489

    Article  CAS  Google Scholar 

  47. Marin DP, Bolin AP, Campoio TR, Guerra BA, Otton R (2013) Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol 17:462–470. https://doi.org/10.1016/j.intimp.2013.07.009

    Article  CAS  Google Scholar 

  48. Margaritis I, Palazzetti S, Rousseau AS, Richard MJ, Favier A (2003) Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 22:147–156. https://doi.org/10.1080/07315724.2003.10719288

    Article  CAS  Google Scholar 

  49. Leonardo-Mendonça RC, Concepción-Huertas M, Guerra-Hernández E, Zabala M, Escames G, Acuña-Castroviejo D (2014) Redox status and antioxidant response in professional cyclists during training. Eur J Sport Sci 14:830–838. https://doi.org/10.1080/17461391.2014.915345

    Article  Google Scholar 

  50. Capó X, Martorell M, Sureda A, Llompart I, Tur JA, Pons A (2015) Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr 54:35–49. https://doi.org/10.1007/s00394-014-0683-2

    Article  CAS  Google Scholar 

  51. Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A (2017) Training and acute exercise modulates mitochondrial dynamics in football players’ blood mononuclear cells. Eur J Appl Physiol 117:1977–1987. https://doi.org/10.1007/s00421-017-3684-z

    Article  Google Scholar 

  52. Margaritis I, Tessier F, Richard MJ, Marconnet P (1997) No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med 18:186–190. https://doi.org/10.1055/s-2007-972617

    Article  CAS  Google Scholar 

  53. Elokda AS, Nielsen DH (2007) Effects of exercise training on the glutathione antioxidant system. Eur J Cardiovasc Prev Rehabil 14:630–637. https://doi.org/10.1097/HJR.0b013e32828622d7

    Article  Google Scholar 

  54. Almar M, Villa JG, Cuevas MJ, Rodríguez-Marroyo JA, Avila C, Gonzalez-Gallego J (2002) Urinary levels of 8-hydroxydeoxyguanosine as a marker of oxidative damage in road cycling. Free Radic Res 36:247–253. https://doi.org/10.1080/10715760290019255

    Article  CAS  Google Scholar 

  55. Corsetti R, Villa M, Pasturenzi M, Finco A, Cornelli U (2012) Redox state in professional cyclists following competitive sports activity. Open Sports Med J 6:34–41. https://doi.org/10.2174/1874387001206010034

    Article  Google Scholar 

  56. Gomez-Cabrera MC, Martínez A, Santangelo G, Pallardó FV, Sastre J (2006) Viña J (2006) Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 96:S31–S33. https://doi.org/10.1079/bjn20061696

    Article  CAS  Google Scholar 

  57. Gomez-Cabrera MC, Domenech E, Viña J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131. https://doi.org/10.1016/j.freeradbiomed.2007.02.001

    Article  CAS  Google Scholar 

  58. Djordjevic DZ, Cubrilo DG, Puzovic VS, Vuletic MS, Zivkovic VI, Barudzic NS, Radovanovic DS, Djuric DM, Jakovljevic VL (2012) Changes in athlete’s redox state induced by habitual and unaccustomed exercise. Oxid Med Cell Longev 2012:805850. https://doi.org/10.1155/2012/805850

    Article  CAS  Google Scholar 

  59. Al-Khelaifi F, Diboun I, Donati F, Botrè F, Alsayrafi M, Georgakopoulos C, Suhre K, Yousri NA, Elrayess MA (2018) A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med Open 4:2. https://doi.org/10.1186/s40798-017-0114-z

    Article  Google Scholar 

  60. Seifi-Skishahr F, Damirchi A, Farjaminezhad M, Babaei P (2016) Physical training status determines oxidative stress and redox changes in response to an acute aerobic exercise. Biochem Res Int 2016:3757623. https://doi.org/10.1155/2016/3757623

    Article  Google Scholar 

  61. Le Moal E, Groussard C, Paillard T, Chaory K, Le Bris R, Plantet K, Pincemail J, Zouhal H (2016) Redox status of professional soccer players is influenced by training load throughout a season. Int J Sports Med 37:680–686. https://doi.org/10.1055/s-0035-1565199

    Article  CAS  Google Scholar 

  62. Lekhi C, Gupta PH, Singh B (2007) Influence of exercise on oxidant stress products in elite Indian cyclists. Br J Sports Med 41:691–693. https://doi.org/10.1136/bjsm.2007.037663

    Article  Google Scholar 

  63. Çakır-Atabek H, Özdemir F, Çolak R (2015) Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol Sport 32:321–328. https://doi.org/10.5604/20831862.1176302

    Article  Google Scholar 

  64. Więcek M, Maciejczyk M, Szymura J, Wiecha S, Kantorowicz M, Szygula Z (2017) Effect of body composition, aerobic performance and physical activity on exercise-induced oxidative stress in healthy subjects. J Sports Med Phys Fitness 57:942–952. https://doi.org/10.23736/S0022-4707.16.06409-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the athletes for their effort and contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos González-Haro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved under the procedures of the local Ethics Committee (University of Zaragoza research ethics committee). All procedures were carried out in line with the Declaration of Helsinki.

Informed consent

All participants gave written informed consent before participating in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Haro, C., Ross, R. & AlDuhishy, A. Plasma oxidative stress (hydrogen peroxide/trolox) responses during a 7-day road cycling stage race and a competitive football match in top-level athletes. Sport Sci Health 16, 691–702 (2020). https://doi.org/10.1007/s11332-020-00645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00645-3

Keywords

Navigation