Skip to main content

Advertisement

Log in

Effect of purslane seed supplementation on inflammatory cytokines, oxidative stress and muscle damage in response to high-intensity intermittent exercise in national athlete runners

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Purslane supplementation has anti-oxidative, anti-inflammatory, skeletal muscle-relaxant activities. However, it is unknown if the ingestion of purslane will affect the oxidative stress and cytokines in exercise-induced muscle damage. The aim of the present study was to examine the effect of purslane supplementation after high-intensity interval exercise (HIIE) on oxidative stress, cytokines, and muscle damage level in young athlete male runners.

Methods

Seven healthy young male runners performed 2.5 km HIIE treadmill protocol. Athletes repeated this protocol following 10 days of purslane seed supplementation (1000 mg/day). Blood samples were collected at baseline and following HIIE protocol and analyzed for oxidative stress (9-HODE and 13-HODE), cytokines (IL-17, and TNF-α), and muscle damage (LDH) biomarkers.

Results

At baseline and following HIIE protocol, 9-HODE, 13-HODE, IL-17, TNF-α, LDH levels were significantly (p < 0.001) lower after purslane supplementation in compared to before purslane supplementation. HIIE protocol induced a significant increase in 9-HODE, 13-HODE, IL-17, TNF-α, and LDH before and after purslane supplementation.

Conclusion

Purslane seed supplementation was able to reduce oxidative stress (9-HODE, 13-HODE), proinflammatory cytokines (IL-17 and TNF-α), and muscle damage (LDH) in male runners after HIIE performance compared to baseline levels. After 10 days of supplementation, the levels were reduced compared to levels pre-supplementation but not after HIIE supplementation in supplemented athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dehghan F, Soori R, Gholami K, Abolmaesoomi M, Yusof A, Muniandy S et al (2016) Purslane (Portulaca oleracea) seed consumption and aerobic training improves biomarkers associated with atherosclerosis in women with type 2 diabetes (T2D). Sci Rep 6:37819

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Soori R, Shahedi V, Akbarnejad A, Choobineh S (2019) Biochemical changes in oxidative stress markers following endurance training and consumption of purslane seed in rats with hydrogen peroxide-induced toxicity. J Sport Sci Health 15:133

    Google Scholar 

  3. El-Newary SA (2016) The hypolipidemic effect of Portulaca oleracea L. stem on hyperlipidemic wister albino rats. Ann Agric Sci 61(1):111–124

    Google Scholar 

  4. Zheng G, Mo F, Ling C, Peng H, Gu W, Li M et al (2018) Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice. Drug Des Devel Ther 12:47–55

    CAS  PubMed  Google Scholar 

  5. Xiang C, Zhang L, Xiaowei Z, Xiaojuan L (2014) Polysaccharides from Portulaca oleracea L. improve exercise endurance and decrease oxidative stress in forced swimming mice. Trop J Pharml Res 13(2):229

    Google Scholar 

  6. Sumbul S, Aftab Ahmad M, Asif M, Akhtar M (2011) Myrtus communis Linn: a review. Indian J Nat Prod Resour 2(4):395–402

    Google Scholar 

  7. Buonocore D, Negro M, Arcelli E, Marzatico F (2015) Anti-inflammatory dietary interventions and supplements to improve performance during athletic training. J Am Coll Nutr 34(Suppl 1):62–67

    PubMed  Google Scholar 

  8. Pedersen BK, Saltin B (2015) Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25(Suppl 3):1–72

    PubMed  Google Scholar 

  9. Suzuki K, Yamada M, Kurakake S, Okamura N, Yamaya K, Liu Q et al (2000) Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol 81(4):281–287

    CAS  PubMed  Google Scholar 

  10. Suzuki K, Nakaji S, Yamada M, Liu Q, Kurakake S, Okamura N et al (2003) Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc 35(2):348–355

    CAS  PubMed  Google Scholar 

  11. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB et al (2018) High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 184:6–11

    CAS  PubMed  Google Scholar 

  12. Alikhani S, Sheikholeslami-Vatani D (2019) Oxidative stress and anti-oxidant responses to regular resistance training in young and older adult women. Geriatr Gerontol Int 19(5):419–422

    PubMed  Google Scholar 

  13. Powers SK, Hogan MC (2016) Exercise and oxidative stress. J Physiol 594(18):5079–5080

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iaia FM, Bangsbo J (2010) Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports 20(Suppl 2):11–23

    PubMed  Google Scholar 

  15. Dorneles GP, Haddad DO, Fagundes VO, Vargas BK, Kloecker A, Romao PR et al (2016) High intensity interval exercise decreases IL-8 and enhances the immunomodulatory cytokine interleukin-10 in lean and overweight-obese individuals. Cytokine 77:1–9

    CAS  PubMed  Google Scholar 

  16. Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW et al (2011) Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. J Appl Physiol 110(3):730–737

    CAS  PubMed  Google Scholar 

  17. Wadley AJ, Chen YW, Lip GY, Fisher JP, Aldred S (2016) Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J Sports Sci 34(1):1–9

    PubMed  Google Scholar 

  18. Zwetsloot KA, John CS, Lawrence MM, Battista RA, Shanely RA (2014) High-intensity interval training induces a modest systemic inflammatory response in active, young men. J Inflamm Res 7:9–17

    PubMed  PubMed Central  Google Scholar 

  19. Rodrigues BM, Dantas E, de Salles BF, Miranda H, Koch AJ, Willardson JM et al (2010) Creatine kinase and lactate dehydrogenase responses after upper-body resistance exercise with different rest intervals. J Strength Cond Res 24(6):1657–1662

    PubMed  Google Scholar 

  20. Meamarbashi A, Abedini F (2011) Preventive effects of purslane extract on delayed onset muscle soreness induced by one session bench-stepping exercise. Isokinet Exerc Sci 19:199–206

    Google Scholar 

  21. Cabral-Santos C, Gerosa-Neto J, Inoue DS, Panissa VLG, Gobbo LA, Zagatto AM et al (2015) Similar anti-inflammatory acute responses from moderate-intensity continuous and high-intensity intermittent exercise. J Sports Sci Med 14(4):849–856

    PubMed  PubMed Central  Google Scholar 

  22. Panissa VL, Azevedo NR, Julio UF, Andreato LV, Pinto ESCM, Hardt F et al (2013) Maximum number of repetitions, total weight lifted and neuromuscular fatigue in individuals with different training backgrounds. Biol Sport 30(2):131–136

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    CAS  PubMed  Google Scholar 

  24. Cabral-Santos C, Castrillon CI, Miranda RA, Monteiro PA, Inoue DS, Campos EZ et al (2016) Inflammatory cytokines and BDNF response to high-intensity intermittent exercise: effect the exercise volume. Front Physiol 7:509

    PubMed  PubMed Central  Google Scholar 

  25. O’Flaherty JT, Wooten RE, Samuel MP, Thomas MJ, Levine EA, Case LD et al (2013) Fatty acid metabolites in rapidly proliferating breast cancer. PLoS One 8(5):e63076

    PubMed  PubMed Central  Google Scholar 

  26. Ramsden CE, Ringel A, Feldstein AE, Taha AY, MacIntosh BA, Hibbeln JR et al (2012) Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fat Acids 87(4–5):135–141

    CAS  Google Scholar 

  27. Collino S, Montoliu I, Martin FP, Scherer M, Mari D, Salvioli S et al (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8(3):e56564

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasman WJ, van Erk MJ, Klöpping WAA, Pellis L, Wopereis S, Bijlsma S et al (2013) Nutrigenomics approach elucidates health-promoting effects of high vegetable intake in lean and obese men. Genes Nutr 8(5):507–521

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kao MP, Ang DS, Pall A, Struthers AD (2010) Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens 24(1):1–8

    CAS  PubMed  Google Scholar 

  31. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44(2):126–131

    CAS  PubMed  Google Scholar 

  32. Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51(5):942–950

    CAS  PubMed  Google Scholar 

  33. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42

    CAS  PubMed  Google Scholar 

  34. Holbrook NJ, Ikeyama S (2002) Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects. Biochem Pharmacol 64(5–6):999–1005

    CAS  PubMed  Google Scholar 

  35. Sacheck JM, Milbury PE, Cannon JG, Roubenoff R, Blumberg JB (2003) Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 34(12):1575–1588

    CAS  PubMed  Google Scholar 

  36. Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji LL (2001) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch 442(3):426–434

    CAS  PubMed  Google Scholar 

  37. Cipryan L (2018) The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J Sport Health Sci 7(3):363–371

    PubMed  Google Scholar 

  38. Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50

    CAS  PubMed  Google Scholar 

  39. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922

    CAS  PubMed  Google Scholar 

  40. Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ et al (2013) Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 305(11):R1281–R1296

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nieman DC, Gillitt ND, Sha W, Meaney MP, John C, Pappan KL et al (2015) Metabolomics-based analysis of banana and pear ingestion on exercise performance and recovery. J Proteome Res 14(12):5367–5377

    CAS  PubMed  Google Scholar 

  42. Nieman DC, Shanely RA, Gillitt ND, Pappan KL, Lila MA (2013) Serum metabolic signatures induced by a three-day intensified exercise period persist after 14 h of recovery in runners. J Proteome Res 12(10):4577–4584

    CAS  PubMed  Google Scholar 

  43. Nieman DC, Shanely RA, Luo B, Meaney MP, Dew DA, Pappan KL (2014) Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75 km cycling. Am J Physiol Regul Integr Comp Physiol 307(1):R68–R74

    CAS  PubMed  Google Scholar 

  44. Nieman DC, Meaney MP, John CS, Knagge KJ, Chen H (2016) 9- and 13-Hydroxy-octadecadienoic acids (9 + 13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2 h running. Brain Behav Immun 56:246–252

    CAS  PubMed  Google Scholar 

  45. Leggate M, Nowell MA, Jones SA, Nimmo MA (2010) The response of interleukin-6 and soluble interleukin-6 receptor isoforms following intermittent high intensity and continuous moderate intensity cycling. Cell Stress Chaperones 15(6):827–833

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D (2014) Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 307(7):E539–E552

    CAS  PubMed  Google Scholar 

  47. Rossoni LV, Oliveira RA, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK et al (2011) Cardiac benefits of exercise training in aging spontaneously hypertensive rats. J Hypertens 29(12):2349–2358

    CAS  PubMed  Google Scholar 

  48. Duzova H, Karakoc Y, Emre MH, Dogan ZY, Kilinc E (2009) Effects of acute moderate and strenuous exercise bouts on IL-17 production and inflammatory response in trained rats. J Sports Sci Med 8(2):219–224

    PubMed  PubMed Central  Google Scholar 

  49. Paschalis V, Giakas G, Baltzopoulos V, Jamurtas AZ, Theoharis V, Kotzamanidis C et al (2007) The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture 25(2):236–242

    PubMed  Google Scholar 

  50. Chen TC, Nosaka K, Sacco P (2007) Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol 102(3):992–999

    PubMed  Google Scholar 

  51. Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS et al (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38(7):527–540

    PubMed  Google Scholar 

  52. Flann KL, LaStayo PC, McClain DA, Hazel M, Lindstedt SL (2011) Muscle damage and muscle remodeling: no pain, no gain? J Exp Biol 214(Pt 4):674–679

    PubMed  Google Scholar 

  53. Sharma A, Vijayakumar M, Rao Ch V, Unnikrishnan MK, Reddy GD (2009) Action of Portulaca oleracea against streptozotocin-induced oxidative stress in experimental diabetic rats. J Complement Integr Med 6(1):1–10

    Google Scholar 

  54. Zakizadeh E, Faghihimani E, Saneei P, Esmaillzadeh A (2015) The effect of purslane seeds on biomarkers of oxidative stress in diabetic patients: a randomized controlled cross-over clinical trial. Int J Prev Med 6:95

    PubMed  PubMed Central  Google Scholar 

  55. Dkhil MA, Moniem AEA, Al-Quraishy S, Saleh RA (2011) Antioxidant effect of purslane (Portulaca oleracea) and its mechanism of action. J Med Plant Res 5(9):1589–1593

    Google Scholar 

  56. Samarghandian S, Borji A, Farkhondeh T (2017) Attenuation of oxidative stress and inflammation by Portulaca oleracea in streptozotocin-induced diabetic rats. J Evid Based Complementary Altern Med 22(4):562–566

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee AS, Lee YJ, Lee SM, Yoon JJ, Kim JS, Kang DG et al (2012) An aqueous extract of Portulaca oleracea ameliorates diabetic nephropathy through suppression of renal fibrosis and inflammation in diabetic db/db mice. Am J Chin Med 40(3):495–510

    PubMed  Google Scholar 

  58. El-Sayed MIK (2011) Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J Ethnopharmacol 137(1):643–651

    PubMed  Google Scholar 

  59. Arruda SF, Siqueira EM, Souza EM (2004) Malanga (Xanthosoma sagittifolium) and purslane (Portulaca oleracea) leaves reduce oxidative stress in vitamin A-deficient rats. Ann Nutr Metab 48(4):288–295

    CAS  PubMed  Google Scholar 

  60. Bai Y, Zang X, Ma J, Xu G (2016) Anti-Diabetic Effect of Portulaca oleracea L. polysaccharide and its mechanism in diabetic rats. Int J Mol Sci. 17(8):1201

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the athletes for their voluntary participation in the study.

Funding

No funding was awarded to support this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Akbarnejad or Rahman Soori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Research Ethics Committee of Sport Sciences Research Institute and performed in accordance with the ethical standards of the Declaration of Helsinki (reference number: IR.SSRI.REC.1397.358).

Informed consent

All participants provided signed informed consent after being informed about the purpose, benefits and risks of the present study as well as a medical history questionnaire prior to data collection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M.M., Ghram, A., Akbarnejad, A. et al. Effect of purslane seed supplementation on inflammatory cytokines, oxidative stress and muscle damage in response to high-intensity intermittent exercise in national athlete runners. Sport Sci Health 16, 47–54 (2020). https://doi.org/10.1007/s11332-019-00572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-019-00572-y

Keywords

Navigation