Effects of local cryotherapy for recovery of delayed onset muscle soreness and strength following exercise-induced muscle damage: systematic review and meta-analysis



The aim of the current study was to evaluate the effects of local cryotherapy on the main symptoms of exercise-induced muscle damage (EIMD) through a systematic literature review.


A search on Cochrane CENTRAL, MEDLINE (PubMed), Lilacs and PEDro databases was carried out from inception to March 2018. Studies that performed a protocol of muscle damage induction, and used local cryotherapy as intervention in comparison with control group/placebo were eligible. The studies should evaluate at least one of the outcomes of interest (delayed onset muscle soreness (DOMS) or muscle strength). Studies that did not evaluate any of the variables of interest or applied ice massage or other cooling modalities were excluded.


The search identified 221 studies, in which 7 studies met the eligibility criteria and were included. There was a mean PEDro score of 7.28, and all studies were ranked as high methodological quality. Meta-analysis showed local cryotherapy does not seem to be effective to accelerate recovery of DOMS (− 0.11; 95% CI − 0.8 to 0.57; I2: 79%) or muscle strength (− 0.59; 95% CI − 2.89 to 1.71; I2: 0%) following EIMD.


In conclusion, the results showed that local cryotherapy does not seem to contribute for the improvement of DOMS and muscle weakness associated with EIMD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Lieber RL, Fridén J (1993) Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol 74:520–526

    CAS  Article  Google Scholar 

  2. 2.

    Nosaka K, Lavender A, Newton M, Sacco P (2003) Muscle damage in resistance training. Int J Sport Health Sci 1:1–8. https://doi.org/10.5432/ijshs.1.1

    Article  Google Scholar 

  3. 3.

    Chapman DW, Newton MJ, McGuigan MR, Nosaka K (2011) Effect of slow-velocity lengthening contractions on muscle damage induced by fast-velocity lengthening contractions. J Strength Cond Res 25:211–219. https://doi.org/10.1519/JSC.0b013e3181bac2bd

    Article  PubMed  Google Scholar 

  4. 4.

    Nosaka K, Newton M, Sacco P et al (2005) Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc 37:746–753. https://doi.org/10.1249/01.MSS.0000162691.66162.00

    Article  PubMed  Google Scholar 

  5. 5.

    Proske U, Allen TJ (2005) Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 33:98–104. https://doi.org/10.1097/00003677-200504000-00007

    Article  PubMed  Google Scholar 

  6. 6.

    Bleakley C, McDonough S, Gardner E et al (2012) Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Sao Paulo Med J. https://doi.org/10.1590/s1516-31802012000500015

    Article  Google Scholar 

  7. 7.

    Costello JT, Baker PRA, Minett GM et al (2015) Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev 9:CD010789. https://doi.org/10.1002/14651858.cd010789.pub2

    Article  Google Scholar 

  8. 8.

    Swenson C, Sward L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6:193–200. https://doi.org/10.1111/j.1600-0838.1996.tb00090.x

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ascensão A, Leite M, Rebelo AN et al (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29:217–225. https://doi.org/10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  10. 10.

    Ferreira-Junior JB, Bottaro M, Vieira CA et al (2014) Effects of partial-body cryotherapy (− 110 °C) on muscle recovery between high-intensity exercise bouts. Int J Sports Med. https://doi.org/10.1055/s-0034-1382057

    Article  PubMed  Google Scholar 

  11. 11.

    Oakley ET, Pardeiro RB, Powell JW, Millar AL (2013) The effects of multiple daily applications of ice to the hamstrings on biochemical measures, signs, and symptoms associated with exercise-induced muscle damage. J Strength Cond Res 27:2743–2751. https://doi.org/10.1519/JSC.0b013e31828830df

    Article  PubMed  Google Scholar 

  12. 12.

    Hohenauer E, Costello JT, Stoop R et al (2018) Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage. Scand J Med Sci Sports. https://doi.org/10.1111/sms.13014

    Article  PubMed  Google Scholar 

  13. 13.

    Lombardi G, Ziemann E, Banfi G (2017) Whole-body cryotherapy in athletes: From therapy to stimulation. An updated review of the literature. Front Physiol. https://doi.org/10.3389/fphys.2017.00258

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ferreira-Junior JB, Bottaro M, Vieira A et al (2015) One session of partial-body cryotherapy (− 110 °C) improves muscle damage recovery. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12353

    Article  PubMed  Google Scholar 

  15. 15.

    Banfi G, Lombardi G, Colombini A, Melegati G (2010) Whole-body cryotherapy in athletes. Sports Med. https://doi.org/10.2165/11531940-000000000-00000

    Article  PubMed  Google Scholar 

  16. 16.

    Bleakley CM, Bieuzen F, Davison GW, Costello JT (2014) Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open Access J Sports Med 5:25–36. https://doi.org/10.2147/OAJSM.S41655

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Torres R, Ribeiro F, Alberto Duarte J, Cabri JMH (2012) Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: systematic review and meta-analysis. Phys Ther Sport 13:101–114. https://doi.org/10.1016/j.ptsp.2011.07.005

    Article  PubMed  Google Scholar 

  18. 18.

    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 89:873–880. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  Google Scholar 

  19. 19.

    Robinson KA, Dickersin K (2002) Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 31:150–153. https://doi.org/10.1093/ije/31.1.150

    Article  PubMed  Google Scholar 

  20. 20.

    Pedro T, Ap V, Delphi T (1999) PEDro scale. Physiother Evid Database. https://doi.org/10.1016/s0004-9514(14)60281-6

    Article  Google Scholar 

  21. 21.

    Higgins JPT, Altman DG (2011) Higgins 2011 Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Cochrane Handb Syst Rev Interv. https://doi.org/10.1002/9780470712184.ch8

  22. 22.

    Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ Br Med J 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  23. 23.

    Selkow NM, Herman DC, Liu Z et al (2015) Blood flow after exercise-induced muscle damage. J Athl Train 50:400–406. https://doi.org/10.4085/1062-6050-49.6.01

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Denegar CR, Perrin DH (1992) Effect of transcutaneous electrical nerve stimulation, cold, and a combination treatment on pain, decreased range of motion, and strength loss associated with delayed onset muscle soreness. J Athl Train 27:200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lima CS, Medeiros DM, Prado LR et al (2017) Local cryotherapy is ineffective in accelerating recovery from exercise-induced muscle damage on biceps brachii. Sport Sci Health. https://doi.org/10.1007/s11332-017-0355-8

    Article  Google Scholar 

  26. 26.

    de Paiva PRV, Tomazoni SS, Johnson DS et al (2016) Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med Sci 31:1925–1933. https://doi.org/10.1007/s10103-016-2071-z

    Article  PubMed  Google Scholar 

  27. 27.

    De Marchi T, Schmitt VM, Machado GP et al (2017) Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med Sci 32:429–437. https://doi.org/10.1007/s10103-016-2139-9

    Article  PubMed  Google Scholar 

  28. 28.

    Hohenauer E, Clarys P, Baeyens J-P, Clijsen R (2017) The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol. PLoS One. https://doi.org/10.3791/55612

    Article  Google Scholar 

  29. 29.

    Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sports Med 36:747–765. https://doi.org/10.2165/00007256-200636090-00003

    Article  PubMed  Google Scholar 

  30. 30.

    Algafly AA, George KP (2007) The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med 41:365–369. https://doi.org/10.1136/bjsm.2006.031237(discussion 369)

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hohenauer E, Taeymans J, Baeyens JP et al (2015) The effect of post-exercise cryotherapy on recovery characteristics: a systematic review and meta-analysis. PLoS One. https://doi.org/10.1371/journal.pone.0139028

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hausswirth C, Louis J, Bieuzen F et al (2011) Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS One. https://doi.org/10.1371/journal.pone.0027749

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Klimek A, Lubkowska A, Szyguła Z et al (2010) Influence of the ten sessions of the whole body cryostimulation on aerobic and anaerobic capacity. Int J Occup Med Environ Health. https://doi.org/10.2478/v10001-010-0019-2

    Article  PubMed  Google Scholar 

  34. 34.

    Fonda B, Sarabon N (2013) Effects of whole-body cryotherapy on recovery after hamstring damaging exercise: a crossover study. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12074

    Article  PubMed  Google Scholar 

  35. 35.

    Takeda M, Sato T, Hasegawa T et al (2014) The effects of cold water immersion after rugby training on muscle power and biochemical markers. J Sports Sci Med 13:616

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wilson LJ, Cockburn E, Paice K et al (2018) Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. Eur J Appl Physiol 5:10. https://doi.org/10.1007/s00421-017-3757-z

    Article  Google Scholar 

  37. 37.

    Cheung K, Hume PA, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164. https://doi.org/10.2165/00007256-200333020-00005

    Article  Google Scholar 

  38. 38.

    Cleak MJ, Eston RG (1992) Delayed onset muscle soreness: mechanisms and management. J Sports Sci. https://doi.org/10.1080/02640419208729932

    Article  PubMed  Google Scholar 

  39. 39.

    Mawhinney C, Low DA, Jones H et al (2017) Cold water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000001223

    Article  PubMed  Google Scholar 

  40. 40.

    Selfe J, Alexander J, Costello JT et al (2014) The effect of three different (− 135 °C) whole body cryotherapy exposure durations on elite rugby league players. PLoS One. https://doi.org/10.1371/journal.pone.0086420

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gregson W, Black MA, Jones H et al (2011) Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. https://doi.org/10.1177/0363546510395497

    Article  PubMed  Google Scholar 

  42. 42.

    Chen TC, Lin KY, Chen HL et al (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol 111:211–223. https://doi.org/10.1007/s00421-010-1648-7

    Article  PubMed  Google Scholar 

  43. 43.

    Newton MJ, Morgan GT, Chapman DW, Nosaka KK (2008) Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22:597–607. https://doi.org/10.1519/JSC.0b013e3181660003

    Article  PubMed  Google Scholar 

  44. 44.

    Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol. https://doi.org/10.1002/cphy.c100054

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. https://doi.org/10.1152/physrev.00031.2007

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Bleakley CM, Davison GW (2010) What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med. https://doi.org/10.1136/bjsm.2009.065565

    Article  PubMed  Google Scholar 

  47. 47.

    Roberts LA, Raastad T, Markworth JF et al (2015) Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. https://doi.org/10.1113/jp270570

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Fröhlich M, Faude O, Klein M et al (2014) Strength training adaptations after cold-water immersion. J Strength Cond Res. https://doi.org/10.1519/jsc.0000000000000434

    Article  PubMed  Google Scholar 

  49. 49.

    Yamane M, Ohnishi N, Matsumoto T (2015) Does regular post-exercise cold application attenuate trained muscle adaptation? Int J Sports Med. https://doi.org/10.1055/s-0034-1398652

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Diulian Muniz Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study did not require ethical approval.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nogueira, N.M., Felappi, C.J., Lima, C.S. et al. Effects of local cryotherapy for recovery of delayed onset muscle soreness and strength following exercise-induced muscle damage: systematic review and meta-analysis. Sport Sci Health 16, 1–11 (2020). https://doi.org/10.1007/s11332-019-00571-z

Download citation


  • Eccentric contraction
  • Eccentric protocol
  • Creatine kinase
  • Cold therapy